Если начальная скорость брошенного тела направлена вверх под некоторым углом к горизонту, то в начальный момент тело имеет составляющие начальной скорости как в горизонтальном, так и в вертикальном направлениях (рис. 178).

Рис. 178. Траектория тела, брошенного под углом к горизонту (в отсутствие сопротивления воздуха)

Задача отличается от рассмотренной в предыдущем параграфе тем, что начальная скорость не равна нулю и для движения по вертикали. Для горизонтальной же составляющей все сказанное остается в силе.

Введем координатные оси: ось , направленную по вертикали вверх, и горизонтальную ось , расположенную в одной вертикальной плоскости с начальной скоростью . Проекция начальной скорости на ось равна , а на ось равна (при показанном на рис. 178 направление осей и обе проекции положительны). Ускорение тела равно и, следовательно, все время направлено по вертикали вниз. Поэтому проекция ускорения на ось равна - , а на ось - нулю.

Поскольку составляющая ускорения в направлении оси отсутствует, проекция скорости на ось остается постоянной и равной своему начальному значению . Следовательно, движение проекции тела на ось будет равномерным. Движение проекции тела на ось происходит в обоих направлениях - вверх и вниз - с одинаковым ускорением . Поэтому на прохождение пути вверх от произвольной высоты до высоты подъема к затрачивается такое же время , как и на прохождение пути вниз от высоты до . Отсюда следует, что симметричные относительно вершины точки (например, точки и ) лежат на одинаковой высоте. А это означает, что траектория симметрична относительно точки . Но характер траектории тела после точки мы уже выяснили в § 112. Это - парабола, которую описывает тело, летящее с горизонтальной начальной скоростью. Следовательно, все то, что мы говорили относительно траектории тела в предыдущем параграфе, в равной мере относится и к рассматриваемому случаю, только вместо «половины параболы» тело описывает «полную параболу» , симметричную относительно точки .

Проверить полученный результат можно также при помощи струи воды, вытекающей из наклонно поставленной трубки (рис, 179). Если позади струи поместить экран с заранее начерченными параболами, то можно увидеть, что струи воды также представляют собой параболы.

Рис. 179. Струя имеет форму параболы, тем более вытянутой, чем больше начальная скорость струи

Высота подъема и расстояние, которое пройдет брошенное тело в горизонтальном направлении до возвращения на ту высоту, с которой тело начало свое движение, т. е. расстояние на рис. 178, зависят от модуля и направления начальной скорости . Прежде всего, при данном направлении начальной скорости и высота и горизонтальное расстояние тем больше, чем больше модуль начальной скорости (рис. 179).

Для одинаковых по модулю начальных скоростей расстояние, которое проходит тело в горизонтальном направлении до возвращения на первоначальную высоту, зависит от направления начальной скорости (рис. 180). При увеличении угла между скоростью и горизонтом это расстояние сначала увеличивается, при угле в достигает наибольшего значения, а затем снова начинает уменьшаться.

Проведем расчет движения тела, брошенного вверх под углом к горизонту с начальной скоростью (рис. 178). Напомним, что проекция скорости тела на ось постоянна и равна . Поэтому координата тела в момент времени равна

. (113.1)

Рис. 180. При увеличении наклона струи, вытекающей с данной скоростью, расстояние, на которое она бьет, сначала увеличивается, достигает наибольшего значения при наклоне в , а затем уменьшается

Движение проекции тела на ось будет сначала равнозамедленным. После того как тело достигнет вершины траектории , проекция скорости станет отрицательной, т. е. одного знака с проекцией ускорения, вследствие чего начнется равноускоренное движение тела вниз. Проекция скорости на ось изменяется со временем по закону

. (113.2)

В вершине траектории скорость тела имеет только горизонтальную составляющую, а обращается в нуль. Чтобы найти момент времени , в который тело достигнет вершины траектории, подставим в формулу (113.2) вместо и приравняем получившееся выражение нулю:

; отсюда (113.3)

Определяемое формулой (113.3) значение дает время, за которое брошенное тело достигает вершины траектории. Если точка бросания и точка падения тела лежат на одном уровне, то все время полета будет равно :, при т. е. при бросании тела вертикально вверх.

113.1. Камень, брошенный с земли вверх под углом к горизонту, падает обратно на землю на расстоянии 14 м. Найти горизонтальную и вертикальную составляющие начальной скорости камня, если весь полет продолжался 2 с. Найти наибольшую высоту подъема камня над землей. Сопротивлением воздуха пренебречь.

113.2. Пожарный направляет струю воды на крышу дома высоты 15 м. Над крышей дома струя поднимается на 5 м. На каком расстоянии от пожарного (считая по горизонтали) струя упадет на крышу, если она вырывается из шланга со скоростью 25 м/с? Сопротивлением воздуха пренебречь.

Если тело бросить под углом к горизонту, то в полете на него действуют сила тяжести и сила сопротивления воздуха. Если силой сопротивления пренебречь, то остается единственная сила -- сила тяжести. Поэтому вследствие 2-го закона Ньютона тело движется с ускорением, равным ускорению свободного падения; проекции ускорения на координатные оси ах = 0, ау = - g.

Рисунок 1. Кинематические характеристики тела, брошенного под углом к горизонту

Любое сложное движение материальной точки можно представить как наложение независимых движений вдоль координатных осей, причем в направлении разных осей вид движения может отличаться. В нашем случае движение летящего тела можно представить как наложение двух независимых движений: равномерного движения вдоль горизонтальной оси (оси Х) и равноускоренного движения вдоль вертикальной оси (оси Y) (рис. 1).

Проекции скорости тела, следовательно, изменяются со временем следующим образом:

где $v_0$ - начальная скорость, ${\mathbf \alpha }$ - угол бросания.

При нашем выборе начала координат начальные координаты (рис. 1) $x_0=y_0=0$. Тогда получим:

(1)

Проанализируем формулы (1). Определим время движения брошенного тела. Для этого положим координату y равной нулю, т.к. в момент приземления высота тела равна нулю. Отсюда получаем для времени полета:

Второе значение времени, при котором высота равна нулю, равно нулю, что соответствует моменту бросания, т.е. это значение также имеет физический смысл.

Дальность полета получим из первой формулы (1). Дальность полета - это значение координаты х в конце полета, т.е. в момент времени, равный $t_0$. Подставляя значение (2) в первую формулу (1), получаем:

Из этой формулы видно, что наибольшая дальность полета достигается при значении угла бросания, равном 45 градусов.

Наибольшую высоту подъема брошенного тела можно получить из второй формулы (1). Для этого нужно подставить в эту формулу значение времени, равное половине времени полета (2), т.к. именно в средней точке траектории высота полета максимальна. Проводя вычисления, получаем

Из уравнений (1) можно получить уравнение траектории тела, т.е. уравнение, связывающее координаты х и у тела во время движения. Для этого нужно из первого уравнения (1) выразить время:

и подставить его во второе уравнение. Тогда получим:

Это уравнение является уравнением траектории движения. Видно, что это уравнение параболы, расположенной ветвями вниз, о чем говорит знак «-» перед квадратичным слагаемым. Следует иметь в виду, что угол бросания $\alpha $ и его функции -- здесь просто константы, т.е. постоянные числа.

Тело брошено со скоростью v0 под углом ${\mathbf \alpha }$ к горизонту. Время полета $t = 2 с$. На какую высоту Hmax поднимется тело?

$$t_В = 2 с$$ $$H_max - ?$$

Закон движения тела имеет вид:

$$\left\{ \begin{array}{c} x=v_{0x}t \\ y=v_{0y}t-\frac{gt^2}{2} \end{array} \right.$$

Вектор начальной скорости образует с осью ОХ угол ${\mathbf \alpha }$. Следовательно,

\ \ \

С вершины горы бросают под углом = 30${}^\circ$ к горизонту камень с начальной скоростью $v_0 = 6 м/с$. Угол наклонной плоскости = 30${}^\circ$. На каком расстоянии от точки бросания упадет камень?

$$ \alpha =30{}^\circ$$ $$v_0=6\ м/с$$ $$S - ?$$

Поместим начало координат в точку бросания, ОХ -- вдоль наклонной плоскости вниз, OY -- перпендикулярно наклонной плоскости вверх. Кинематические характеристики движения:

Закон движения:

$$\left\{ \begin{array}{c} x=v_0t{cos 2\alpha +g\frac{t^2}{2}{sin \alpha \ }\ } \\ y=v_0t{sin 2\alpha \ }-\frac{gt^2}{2}{cos \alpha \ } \end{array} \right.$$ \

Подставив полученное значение $t_В$, найдём $S$:

Рассмотрим в качестве примера применения выведенных формул движение тела, брошенного под углом к горизонту в отсутствии сопротивления воздуха. Скажем, на горе, на высоте над уровнем моря стоит пушка, охраняющая прибрежные воды. Пусть снаряд выпускается под углом к горизонту с начальной скоростью из точки , положение которой определяется радиус-вектором (рис. 2.16).

Рис. 2.16. Движение тела, брошенного под углом к горизонту

Дополнение.

Вывод уравнений движения материальной точки в поле силы тяжести

Напишем уравнение движения (уравнение второго закона Ньютона):

это означает, что тела - материальные точки - любых масс при одних и тех же начальных условиях будут двигаться в однородном поле тяжести одинаково. Спроектируем уравнение (2.7.2) на оси декартовой системы координат. Горизонтальная ось ОХ показана на рис. 13 пунктиром, ось OY проведем через точку О вертикально вверх, а горизонтальную ось OZ , также проходящую через точку О , направим перпендикулярно вектору на нас. Получаем:

Вертикальным направлением, по определению, называется направление вектора , поэтому его проекции на горизонтальные оси OX и OY равны нулю. Во втором уравнении учтено, что вектор направлен вниз, а ось OY - вверх.

Рис. 2.17. Движение тела, брошенного под углом к горизонту.

Добавим к уравнениям движения начальные условия, которые определяют положение и скорость тела в начальный момент времени t 0 , пусть t 0 = 0 . Тогда, согласно рис. 2.7.4

Если производная некоторой функции равна нулю, то функция постоянна, соответственно из первого и третьего уравнений (2.7.3) получаем:

Во втором уравнении (2.7.3) производная равна константе, откуда следует, что функция зависит от своего аргумента линейно, то есть

Объединяя (2.7.7) и (2.7.9), получаем окончательные выражения для зависимостей проекций скорости на оси координат от времени:

Третье уравнение (2.7.11) показывает, что траектория тела плоская, целиком лежит в плоскости XOY , это вертикальная плоскость, определяемая векторами и . Очевидно, что последнее утверждение общее: как бы ни были выбраны направления осей координат, траектория тела брошенного под углом к горизонту плоская, она всегда лежит в плоскости, определяемой вектором начальной скорости и вектором ускорения свободного падения .

Если три уравнения (2.7.10) умножить на орты осей , , и и сложить, а потом то же самое проделать с тремя уравнениями (2.7.11), то мы получим зависимости от времени вектора скорости частицы и её радиус вектора. С учетом начальных условий имеем:

Формулы (2.7.12) и (2.7.13) можно было получить сразу, непосредственно из (2.7.2), если учесть, что ускорение свободного падения есть постоянный вектор. Если ускорение - производная от вектора скорости - постоянно, то вектор скорости зависит от времени линейно, а радиус-вектор, производная по времени от которого и есть линейно зависящий от времени вектор скорости, зависит от времени квадратично. Это и записано в соотношениях (2.7.12) и (2.7.13) с константами - постоянными векторами - подобранными соответственно начальным условиям в форме (2.7.4).

Из (2.7.13) в частности видно, что радиус-вектор является суммой трех векторов, складывающихся по обычным правилам, что наглядно показано на рис. 2.18.

Рис. 2.18. Представление радиус-вектора r(t) в произвольный момент времени t в виде суммы трех векторов

Эти векторы представляют собой:

Здесь отчетливо проявляется принцип независимости движений, известный в других областях физики как принцип суперпозиции (наложения). Вообще говоря, согласно принципу суперпозиции результирующий эффект нескольких воздействий представляет собой сумму эффектов от каждого воздействия в отдельности. Он является следствием линейности уравнений движения.

Видео 2.3. Независимость горизонтального и вертикального перемещений при движении в поле тяжести.

Поместим начало отсчета в точку бросания. Теперь =0 , оси, как и ранее, развернем так, чтобы ось 0x была горизонтальной, ось - вертикальной, а начальная скорость лежала в плоскости х0у (рис. 2.19).

Рис. 2.19. Проекции начальной скорости на координатные оси

Спроецируем на оси координат (см.(2.7.11)):

Траектория полета . Если из системы полученных уравнений исключить время t , то получим уравнение траектории:

Это уравнение параболы, ветви которой направлены вниз.

Дальность полета при стрельбе с высоты h . В момент падения тела (снаряд попадает в цель, находящуюся на поверхности моря). Расстояние по горизонтали от пушки до цели равно при этом . Подставляя ; в уравнение траектории, получаем квадратное уравнение для дальности полета :

У квадратного уравнения имеется два решения (в данном случае - положительное и отрицательное). Нам нужно положительное решение. Стандартное выражение для корня квадратного уравнения нашей задачи может быть приведено к виду:

достигается при , если h = 0 .

Максимальная дальность полета . При выстреле с горы высотой это уже не так. Найдем угол , при котором достигается максимальная дальность полета. Зависимость дальности полета от угла достаточно сложна, и вместо дифференцирования для нахождения максимума мы поступим следующим образом. Представим себе, что мы увеличиваем начальный угол . Сначала дальность полета растет (см. формулу (2.7.15)), достигает максимального значения и снова начинает падать (до нуля при выстреле вертикально вверх). Таким образом, для каждой дальности полета, кроме максимальной, соответсвует два направления начальной скорости.

Обратимся снова к квадратному уравнению относительности дальности полета и рассмотрим его как уравнение для угла . Учитывая, что

перепишем его в виде:

Мы снова получили квадратное уравнение, на этот раз - для неизвестной величины . Уравнение имеет два корня, что соответствует двум углам, при которых дальность полета равна . Но когда , оба корня должны совпасть. Это означает, что равен нулю дискриминант квадратного уравнения:

откуда следует результат

При этот результат воспроизводит формулу (2.7.16)

Обычно высота много меньше дальности полета на равнине. При квадратный корень может быть аппроксимирован первыми членами разложения в ряд Тейлора и мы получаем приближенное выражение

то есть дальность выстрела увеличивается примерно на высоту подъема пушки.

Когда l = l max , и a = a max , как уже отмечалось, дискриминант квадратного уравнения равен нулю, соответственно, его решение имеет вид:

Поскольку тангенс меньше единицы, угол, при котором достигается максимальная дальность полета, меньше .

Максимальная высота подъёма над начальной точкой. Эта величина может быть определена из равенства нулю вертикальной составляющей скорости в верхней точке траектории

При этом горизонтальная составляющая скорости не равна нулю, поэтому

Когда изучают механическое движение в физике, то после ознакомления с равномерным и равноускоренным перемещением объектов, переходят к рассмотрению движения тела под углом к горизонту. В данной статье изучим подробнее этот вопрос.

Что собой представляет движение тела под углом к горизонту?

Этот тип перемещения объектов возникает, когда человек бросает камень в воздух, пушка совершает выстрел ядром, или вратарь выбивает от ворот футбольный мяч. Все подобные случаи рассматриваются наукой баллистикой.

Отмеченный вид перемещения объектов в воздухе происходит по параболической траектории. В общем случае проведение соответствующих расчетов является делом не простым, поскольку необходимо учитывать сопротивление воздуха, вращение тела во время полета, вращение Земли вокруг оси и некоторые другие факторы.

В данной статье мы не будем учитывать все эти факторы, а рассмотрим вопрос с чисто теоретической точки зрения. Тем не менее, полученные формулы достаточно хорошо описывают траектории тел, перемещающихся на небольшие расстояния.

Получение формул для рассматриваемого вида движения

Выведем тела к горизонту под углом. При этом будем учитывать только одну-единственную силу, действующую на летящий объект - силу тяжести. Поскольку она действует вертикально вниз (параллельно оси y и против нее), то, рассматривая горизонтальную и вертикальную составляющие движения, можно сказать, что первая будет иметь характер равномерного прямолинейного перемещения. А вторая - равнозамедленного (равноускоренного) прямолинейного перемещения с ускорением g. То есть, компоненты скорости через значение v 0 (начальная скорость) и θ (угол направления движения тела) запишутся так:

v x = v 0 *cos(θ)

v y = v 0 *sin(θ)-g*t

Первая формула (для v x) справедлива всегда. Что касается второй, то тут нужно отметить один нюанс: знак минус перед произведением g*t ставится только в том случае, если вертикальная компонента v 0 *sin(θ) направлена вверх. В большинстве случаев так и происходит, однако, если бросить тело с высоты, направив его вниз, тогда в выражении для v y следует поставить знак "+" перед g*t.

Проинтегрировав формулы для компонент скорости по времени, и учитывая начальную высоту h полета тела, получаем уравнения для координат:

x = v 0 *cos(θ)*t

y = h+v 0 *sin(θ)*t-g*t 2 /2

Вычисление дальности полета

При рассмотрении в физике движения тела к горизонту под углом, полезным для практического применения, оказывается расчет дальности полета. Определим ее.

Поскольку это перемещение представляет собой равномерное движения без ускорения, то достаточно подставить в него время полета и получить необходимый результат. Дальность полета определяется исключительно перемещением вдоль оси x (параллельно горизонту).

Время нахождения тела в воздухе можно вычислить, приравняв к нулю координату y. Имеем:

0 = h+v 0 *sin(θ)*t-g*t 2 /2

Это квадратное уравнение решаем через дискриминант, получаем:

D = b 2 - 4*a*c = v 0 2 *sin 2 (θ) - 4*(-g/2)*h = v 0 2 *sin 2 (θ) + 2*g*h,

t = (-b±√D)/(2*a) = (-v 0 *sin(θ)±√(v 0 2 *sin 2 (θ) + 2*g*h))/(-2*g/2) =

= (v 0 *sin(θ)+√(v 0 2 *sin 2 (θ) + 2*g*h))/g.

В последнем выражении один корень со знаком минуса отброшен, в виду его незначительного физического значения. Подставив время полета t в выражение для x, получаем дальность полета l:

l = x = v 0 *cos(θ)*(v 0 *sin(θ)+√(v 0 2 *sin 2 (θ) + 2*g*h))/g.

Проще всего это выражение проанализировать, если начальная высота равна нулю (h=0), тогда получим простую формулу:

l = v 0 2 *sin(2*θ)/g

Это выражение свидетельствует, что максимальную дальность полета можно получить, если тело бросить под углом 45 o (sin(2*45 o) = м1).

Максимальная высота подъема тела

Помимо дальности полета, также полезно найти высоту над землей, на которую может подняться тело. Поскольку этот тип движения описывается параболой, ветви которой направлены вниз, то максимальная высота подъема является ее экстремумом. Последний рассчитывается путем решения уравнения для производной по t для y:

dy/dt = d(h+v 0 *sin(θ)*t-g*t 2 /2)/dt = v 0 *sin(θ)-gt=0 =>

=> t = v 0 *sin(θ)/g.

Подставляем это время в уравнение для y, получаем:

y = h+v 0 *sin(θ)*v 0 *sin(θ)/g-g*(v 0 *sin(θ)/g) 2 /2 = h + v 0 2 *sin 2 (θ)/(2*g).

Это выражение свидетельствует, что на максимальную высоту тело поднимется, если его бросить вертикально вверх (sin 2 (90 o) = 1).

Пусть тело брошено под углом к горизонту со скоростью . Как и в предыдущих случаях, будем пренебрегать сопротивлением воздуха. Для описания движения необходимо выбрать две оси координат - Ox и Oy (рис. 1). Начало отсчета совместим с начальным положением тела. Проекции начальной скорости на оси Oy и Ox

Проекции ускорения:

Тогда движение тела будет описываться уравнениями:

Из этих формул следует, что в горизонтальном направлении тело движется равномерно со скоростью , а в вертикальном - равноускоренно.

Траекторией движения тела будет парабола. Учитывая, что в верхней точке параболы , можно найти время подъема тела до верхней точки параболы:

Подставив значение в уравнение (3), найдем максимальную высоту подъема тела:

Время полета тела находим из условия, что при координата . Следовательно, . Отсюда, - время полета тела. Сравнивая эту формулу с формулой (5), видим, что . Время движения тела с максимальной высоты . Следовательно, сколько времени тело поднимается на максимальную высоту, столько времени оно опускается с этой высоты. Подставляя в уравнение координаты x (1) значение времени , найдем:

Мгновенная скорость в любой точке траектории направлена по касательной к траектории (см. рис. 1). модуль скорости определяется по формуле

Таким образом, движение тела, брошенного под углом к горизонту или в горизонтальном направлении, можно рассматривать как результат двух независимых движений - горизонтального равномерного и вертикального равноускоренного (свободного падения без начальной скорости или движения тела, брошенного вертикально вверх).