Лекция № 6.

Количество часов: 2

МИТОХОНДРИИ И ПЛАСТИДЫ

1.

2. Пластиды, строение, разновидности, функции

3.

Митохондрии и пластиды – двухмембранные органоиды эукариотических клеток. Митохондрии встречаются во всех клетках животных и растений. Пластиды характерны для клеток растений, осуществляющих фотосинтетические процессы. Эти органоиды имеют сходный план строения и некоторые общие свойства. Однако по основным метаболическим процессам они существенно отличаются друг от друга.

1. Митохондрии, строение, функциональное значение

Общая характеристика митохондрий. Митохондрии (греч. “митос” - нить, “хондрион” - зерно, гранула) – округлые, овальные или палочковидные двухмембранные органоиды диаметром около 0,2-1 мкм и длиной до 7-10 мкм. Эти органоиды можно обнаружить с помощью световой микроскопии, поскольку они обладают достаточной величиной и высокой плотностью. Особенности внутреннего строения их можно изучить только с помощью электронного микроскопа. Митохондрии были открыты в 1894 г. Р. Альтманом, который дал им название «биобласты». Термин "митохондрия" был введен К. Бенда в 1897 г. Митохондрии имеются практически во всех эукариотических клетках. У анаэробных организмов (кишечные амебы и др.) митохондрии отсутствуют. Число митохондрий в клетке колеблется от 1 до 100 тыс. и зависит от типа, функциональной активности и возраста клетки. Так в растительных клетках митохондрий меньше, чем в животных; а в молодых клетках больше, чем в старых. Жизненный цикл митохондрий составляет несколько дней. В клетке митохондрии обычно скапливаются вблизи участков цитоплазмы, где возникает потребность в АТФ. Например, в сердечной мышце митохондрии находятся вблизи миофибрилл, а в спермиях образуют спиральный футляр вокруг оси жгутика.

Ультрамикроскопическое строение митохондрий. Митохондрии ограничены двумя мембранами, каждая из которых имеет толщину около 7 нм. Внешнюю мембрану от внутренней отделяет межмембранное пространство шириной около 10-20 нм. Внешняя мембрана гладкая, а внутренняя образует складки – кристы (лат. “криста” – гребень, вырост), увеличивающие ее поверхность. Число крист неодинаково в митохондриях разных клеток. Их может быть от нескольких десятков до нескольких сотен. Особенно много крист в митохондриях активно функционирующих клеток, например мышечных. В кристах располагаются цепи переноса электронов и сопряженного с ним фосфорилирования АДФ (окислительное фосфорилирование). Внутреннее пространство митохондрий заполнено гомогенным веществом, называемым матриксом. Митохондриальные кристы обычно полностью не перегораживают полость митохондрии. Поэтому матрикс на всем протяжении является непрерывным. В матриксе содержатся кольцевые молекулы ДНК, митохондриальные рибосомы, встречаются отложения солей кальция и магния. На митохондриальной ДНК происходит синтез молекул РНК различных типов, рибосомы участвуют в синтезе ряда митохондриальных белков. Малые размеры ДНК митохондрий не позволяют кодировать синтез всех митохондриальных белков. Поэтому синтез большинства белков митохондрий находится под ядерным контролем и осуществляется в цитоплазме клетки. Без этих белков рост и функционирование митохондрий невозможно. Митохондриальная ДНК кодирует структурные белки, ответственные за правильную интеграцию в митохондриальных мембранах отдельных функциональных компонентов.

Размножение митохондрий. Митохондрии размножаются путем деления перетяжкой или фрагментацией крупных митохондрий на более мелкие. Образовавшиеся таким путем митохондрии могут расти и снова делиться.

Функции митохондрий. Основная функция митохондрий заключается в синтезе АТФ. Этот процесс происходит в результате окисления органических субстратов и фосфорилирования АДФ. Первый этап этого процесса происходит в цитоплазме в анаэробных условиях. Поскольку основным субстратом является глюкоза, то процесс носит название гликолиза. На данном этапе субстрат подвергается ферментативному расщеплению до пировиноградной кислоты с одновременным синтезом небольшого количества АТФ. Второй этап происходит в митохондриях и требует присутствия кислорода. На этом этапе происходит дальнейшее окисление пировиноградной кислоты с выделением СО 2 и переносом электронов на акцепторы. Эти реакции осуществляются с помощью ряда ферментов цикла трикарбоновых кислот, которые локализованы в матриксе митохондрии. Освободившиеся в процессе окисления в цикле Кребса электроны переносятся в дыхательную цепь (цепь переноса электронов). В дыхательной цепи они соединяются с молекулярным кислородом, образуя молекулы воды. В результате этого небольшими порциями выделяется энергия, которая запасается в виде АТФ. Полное окисление одной молекулы глюкозы с образованием диоксида углерода и воды обеспечивает энергией перезарядку 38 молекул АТФ (2 молекулы в цитоплазме и 36 в митохондриях).

Аналоги митохондрий у бактерий. У бактерий митохондрий нет. Вместо них у них имеются цепи переноса электронов, локализованные в мембране клетки.

2. Пластиды, строение, разновидности, функции. Проблема происхождения пластид

Пластиды (от. греч. plastides – создающие, образующие) – это двухмембранные органоиды, характерные для фотосинтезирующих эукариотных организмов. Различают три основных типа пластид: хлоропласты, хромопласты и лейкопласты. Совокупность пластид в клетке называют пластидомом. Пластиды связаны между собой единым происхождением в онтогенезе от пропластид меристематических клеток. Каждый их этих типов при определенных условиях может переходить один в другой. Как и митохондрии, пластиды содержат собственные молекулы ДНК. Поэтому они также способны размножаться независимо от деления клетки.

Хлоропласты (от греч. « chloros » – зеленый, « plastos » - вылепленный) – это пластиды, в которых осуществляется фотосинтез.

Общая характеристика хлоропластов. Хлоропласты представляют собой органоиды зеленого цвета длиной 5-10 мкм и шириной 2-4 мкм. У зеленых водорослей встречаются гигантские хлоропласты (хроматофоры), достигающие длины 50 мкм. У высших растений хлоропласты имеют двояковыпуклую или эллипсоидную форму. Количество хлоропластов в клетке может варьировать от одного (некоторые зеленые водоросли) до тысячи (махорка). В клетке высших растений в среднем находится 15-50 хлоропластов. Обычно хлоропласты равномерно распределены по цитоплазме клетки, но иногда они группируются около ядра или клеточной оболочки. По-видимому, это зависит от внешних воздействий (интенсивность освещения).

Ультрамикроскопическое строение хлоропластов. От цитоплазмы хлоропласты отделены двумя мембранами, каждая из которых имеет толщину около 7 нм. Между мембранами находится межмембранное пространство диаметром около 20-30 нм. Наружная мембрана гладкая, внутренняя имеет складчатую структуру. Между складками располагаются тилакоиды , имеющие вид дисков. Тилакоиды образуют стопки наподобие столбика монет, называемые гранами. М ежду собой граны соединены другими тилакоидами (ламелы, фреты ). Число тилакоидов в одной гране варьирует от нескольких штук до 50 и более. В свою очередь в хлоропласте высших растений находится около 50 гран (40-60), расположенных в шахматном порядке. Такое расположение обеспечивает максимальную освещенность каждой граны. В центре граны находится хлорофилл, окруженный слоем белка; затем располагается слой липоидов, снова белок и хлорофилл. Хлорофилл имеет сложное химическое строение и существует в нескольких модификациях (a , b , c , d ). У высших растений и водорослей в качестве основного пигмента содержится х лорофилл а с формулой С 55 Н 72 О 5 N 4 М g . В качестве дополнительных содержатся хлорофилл b (высшие растения, зеленые водоросли), хлорофилл с (бурые и диатомовые водоросли), хлорофилл d (красные водоросли). Образование хлорофилла происходит только при наличии света и железа, играющего роль катализатора. Матрикс хлоропласта представляет собой бесцветное гомогенное вещество, заполняющее пространство между тилакоидами. В матриксе находятся ферменты "темновой фазы" фотосинтеза, ДНК, РНК, рибосомы. Кроме этого, в матриксе происходит первичное отложение крахмала в виде крахмальных зерен.

Свойства хлоропластов:

· полуавтономность (имеют собственный белоксинтезирующий аппарат, однако большая часть генетической информации находится в ядре);

· способность к самостоятельному движению (уходят от прямых солнечных лучей);

· способность к самостоятельному размножению.

Размножение хлоропластов. Хлоропласты развиваются из пропластид, которые способны реплицироваться путем деления. У высших растений также встречается деление зрелых хлоропластов, но крайне редко. При старении листьев и стеблей, созревании плодов хлоропласты утрачивают зеленую окраску, превращаясь в хромопласты.

Функции хлоропластов. Основная функция хлоропластов – фотосинтез. Кроме фотосинтеза хлоропласты осуществляют синтез АТФ из АДФ (фосфорилирование), синтез липидов, крахмала, белков. В хлоропластах также синтезируются ферменты, обеспечивающие световую фазу фотосинтеза.

Хромопласты (от греч. chromatos – цвет, краска и « plastos » – вылепленный) – это окрашенные пластиды. Цвет их обусловлен наличием следующих пигментов: каротина (оранжево-желтый), ликопина (красный) и ксантофилла (желтый). Хромопластов особенно много в клетках лепестков цветков и оболочек плодов. Больше всего хромопластов в плодах и увядающих цветках и листьях. Хромопласты могут развиваться из хлоропластов, которые при этом теряют хлорофилл и накапливают каротиноиды. Это происходит при созревании многих фруктов: налившись спелым соком, они желтеют, розовеют или краснеют. Основная функция хромопластов заключается в обеспечении окраски цветов, плодов, семян.

В отличие от лейкопластов и особенно хлоропластов внутренняя мембрана хлоропластов не образует тилакоидов (или образует одиночные). Хромопласты – это конечный итог развития пластид (в хромопласты превращаются хлоропласты и пластиды).

Лейкопласты (от греч. leucos – белый, plastos – вылепленный, созданный) . Это бесцветные пластиды округлой, яйцевидной, веретенообразной формы. Находятся в подземных частях растений, семенах, эпидермисе, сердцевине стебля. Особенно богаты лейкопластами клубни картофеля. Внутренняя оболочка образует немногочисленные тилакоиды. На свету из хлоропластов образуются хлоропласты. Лейкопласты, в которых синтезируется и накапливается вторичный крахмал называют амилопластами , масла – эйлалопластами , белки – протеопластами. Основная функция лейкопластов – это аккумуляция питательных веществ.

3. Проблема происхождения митохондрий и пластид. Относительная автономия

Существует две основные теории происхождения митохондрий и пластид. Это теории прямой филиации и последовательных эндосимбиозов. Согласно теории прямой филиации митохондрии и пластиды образовались путем компартизации самой клетки. Фотосинтезирующие эукариоты произошли от фотосинтезирующих прокариот. У образовавшихся автотрофных эукариотических клеток путем внутриклеточной дифференцировки образовались митохондрии. В результате утраты пластид от автотрофов произошли животные и грибы.

Наиболее обоснованной является теория последовательных эндосимбиозов. Согласно этой теории возникновение эукариотической клетки прошло через несколько этапов симбиоза с другими клетками. На первой стадии клетки типа анаэробных гетеротрофных бактерий включили в себя свободноживущие аэробные бактерии, превратившиеся в митохондрии. Параллельно этому в клетке-хозяине прокариотической генофор формируется в обособленное от цитоплазмы ядро. Таким путем возникла первая эукариотическая клетка, которая была гетеротрофной. Возникшие эукариотические клетки путем повторных симбиозов включили в себя синезеленые водоросли, что привело к появлению в них структур типа хлоропластов. Таким образом, митохондрии уже были у гетеротрофных эукариотических клеток, когда последние в результате симбиоза приобрели пластиды. В дальнейшем в результате естественного отбора митохондрии и хлоропласты утратили часть генетического материала и превратились в структуры с ограниченной автономией.

Доказательства эндосимбиотической теории:

1. Сходство структуры и энергетических процессов у бактерий и митохондрий, с одной стороны, и у синезеленых водорослей и хлоропластов, с другой стороны.

2. Митохондрии и пластиды имеют собственную специфическую систему синтеза белков (ДНК, РНК, рибосомы). Специфичность этой системы заключается в автономности и резком отличии от таковой в клетке.

3. ДНК митохондрий и пластид представляет собой небольшую циклическую или линейную молекулу, которая отличается от ДНК ядра и по своим характеристикам приближается к ДНК прокариотических клеток. Синтез ДНК митохондрий и пластид не зависит от синтеза ядерной ДНК.

4. В митохондриях и хлоропластах имеются и-РНК, т-РНК, р-РНК. Рибосомы и р-РНК этих органоидов резко отличаются от таковых в цитоплазме. В частности рибосомы митохондрий и хлоропластов, в отличие от цитоплазматических рибосом, чувствительны к антибиотику хлорамфениколу, подавляющему синтез белка у прокариотических клеток.

5. Увеличение числа митохондрий происходит путем роста и деления исходных митохондрий. Увеличение числа хлоропластов происходит через изменения пропластид, которые, в свою очередь, размножаются путем деления.

Эта теория хорошо объясняет сохранение у митохондрий и пластид остатков систем репликации и позволяет построить последовательную филогению от прокариот к эукариотам.

Относительная автономия хлоропластов и пластид. В некоторых отношениях митохондрии и хлоропласты ведут себя как автономные организмы. Например, эти структуры образуются только из исходных митохондрий и хлоропластов. Это было продемонстрировано в опытах на растительных клетках, у которых образование хлоропластов подавляли антибиотиком стрептомицином, и на клетках дрожжей, где образование митохондрий подавляли другими препаратами. После таких воздействий клетки уже никогда не восстанавливали отсутствующие органеллы. Причина в том, что митохондрии и хлоропласты содержат определенное количество собственного генетического материала (ДНК), который кодирует часть их структуры. Если эта ДНК утрачивается, что и происходит при подавлении образования органелл, то структура не может быть воссоздана. Оба типа органелл имеют свою собственную белок-синтезирующую систему (рибосомы и транспортные РНК), которая несколько отличается от основной белок-синтезирующей системы клетки; известно, например, что белок-синтезирующая система органелл может быть подавлена с помощью антибиотиков, тогда как на основную систему они не действуют. ДНК органелл ответственна за основную часть внехромосомной, или цитоплазматической, наследственности. Внехромосомная наследственность не подчиняется менделевским законам, так как при делении клетки ДНК органелл передается дочерним клеткам иным путем, нежели хромосомы. Изучение мутаций, которые происходят в ДНК органелл и ДНК хромосом, показало, что ДНК органелл отвечает лишь за малую часть структуры органелл; большинство их белков закодированы в генах, расположенных в хромосомах. Относительная автономия митохондрий и пластид рассматривается как одно из доказательств их симбиотического происхождения.

Жизнь как биологический процесс едина во всей биосфере, и она существует на основании фундаментальных принципов. А потому разные формы жизни, а также различные структурные компоненты представителей биологических видов, имеют значительные сходства. Отчасти они обеспечиваются общностью происхождения или выполнением похожих функций. В данном контексте следует детально разобрать, в чем проявляется сходство митохондрий и хлоропластов, хотя с первого взгляда эти клеточные органеллы имеют мало общего.

Митохондрии

Митохондриями называются двухмембранные клеточные структуры, ответственные за энергообеспечение ядра и органелл. Их находят в растений, грибов и животных. Они отвечают за то есть конечное усваивание кислорода, из чего в результате биохимического превращения извлекается энергия для синтеза макроэргов. Достигается это путем передачи заряда через мембрану митохондрий и ферментативное окисление глюкозы.

Хлоропласты

Хлоропластами называются клеточные органеллы растений, некоторых фотосинтезирующих бактерий и протистов. Это клеточные двухмембранные структуры, в которых синтезируется глюкоза благодаря использованию энергии солнечного света. Этот процесс достигается передачей энергии фотона и протеканием ферментативных реакций, связанных с передачей заряда через мембрану. Результатом фотосинтеза является утилизация углекислого газа, синтез глюкозы и высвобождение молекулярного кислорода.

Сходство митохондрий и хлоропластов

Хлоропласты и митохондрии являются клеточными органеллами с двумя мембранами. Первым слоем они ограждаются от цитоплазмы клетки, а второй формирует многочисленные складки, на которых протекают процессы передачи зарядов. Принцип их работы схож, однако направлен в разные стороны. У митохондрий происходит ферментативное с использованием кислорода, а в качестве продуктов реакции выступает углекислый газ. В результате превращения также синтезируется энергия.

В хлоропластах наблюдается обратный процесс — синтез глюкозы и высвобождение кислорода из углекислого газа с расходом энергии света. Это принципиальное различие между данными органеллами, но отличается лишь направление процесса. Его электрохимия практически идентична, хотя для этого используются разные посредники.

Также можно детально рассмотреть, в чем проявляется сходство митохондрий и хлоропластов. Оно заключается в автономности органелл, так как они имеют даже свою молекулу ДНК, хранящую коды структурных белков и ферментов. В обеих органеллах имеется свой автономный аппарат биосинтеза белка, потому хлоропласты и митохондрии способны самостоятельно обеспечивать себя необходимыми ферментами и восстанавливать свою структуру.

Резюме

Главное сходство митохондрий и хлоропластов — их автономия внутри клетки. Отделившись от цитоплазмы двойной мембраной и имея свой собственный комплекс ферментов биосинтеза, они ни в чем не зависят от клетки. Также они имеют свой собственный набор генов, а потому могут считаться отдельным живым организмом. Существует филогенетическая теория, что на ранних этапах развития одноклеточной жизни митохондрии и хлоропласты были простейшими прокариотами.

Она гласит, что в определенный период произошло их поглощение другой клеткой. Из-за наличия отдельной мембраны они не были расщеплены, став донором энергии для «хозяина». В ходе эволюции за счет обмена генами у доядерных организмов произошло встраивание ДНК хлоропластов и митохондрий в геном клетки-хозяина. С этого момента клетка сама была способна осуществить сборку этих органелл, если они не были переданы ей в ходе митоза.

Важную роль в жизнедеятельности каждой клетки играют особые структуры - митохондрии. Строение митохондрий позволяет работать органелле в полуавтономном режиме.

Общая характеристика

Митохондрии были обнаружены в 1850 году. Однако понять строение и функциональное назначение митохондрий стало возможно только в 1948 году.

За счёт своих довольно крупных размеров органеллы хорошо различимы в световом микроскопе. Максимальная длина - 10 мкм, диаметр не превышает 1 мкм.

Митохондрии присутствуют во всех эукариотических клетках. Это двумембранные органоиды обычно бобовидной формы. Также встречаются митохондрии сферической, нитевидной, спиралевидной формы.

Количество митохондрий может значительно варьировать. Например, в клетках печени их насчитывается около тысячи, а в ооцитах - 300 тысяч. Растительные клетки содержат меньше митохондрий, чем животные.

ТОП-4 статьи которые читают вместе с этой

Рис. 1. Нахождение митохондрий в клетке.

Митохондрии пластичны. Они меняют форму и перемещаются в активные центры клетки. Обычно митохондрий больше в тех клетках и частях цитоплазмы, где выше потребность в АТФ.

Строение

Каждая митохондрия отделена от цитоплазмы двумя мембранами. Наружная мембрана гладкая. Строение внутренней мембраны более сложное. Она образует многочисленные складки - кристы, которые увеличивают функциональную поверхность. Между двумя мембранами находится пространство в 10-20 нм, заполненное ферментами. Внутри органеллы располагается матрикс - гелеобразное вещество.

Рис. 2. Внутреннее строение митохондрий.

В таблице “Строение и функции митохондрии” подробно описаны компоненты органеллы.

Состав

Описание

Функции

Внешняя мембрана

Состоит из липидов. Содержит большое количество белка порина, который образует гидрофильные канальцы. Вся наружная мембрана пронизана порами, через которые в митохондрию попадают молекулы веществ. Также содержит ферменты, участвующие в синтезе липидов

Защищает органеллу, способствует транспорту веществ

Располагаются перпендикулярно оси митохондрии. Могут иметь вид пластинок или трубочек. Количество крист варьирует в зависимости от типа клеток. В клетках сердца их в три раза больше, чем в клетках печени. Содержат фосфолипиды и белки трёх типов:

Катализирующие - участвуют в окислительных процессах;

Ферментативные - участвуют в образовании АТФ;

Транспортные - переносят молекулы из матрикса наружу и обратно

Осуществляет вторую стадию дыхания с помощью дыхательной цепи. Происходит окисление водорода, образование 36 молекул АТФ и воды

Состоит из смеси ферментов, жирных кислот, белков, РНК, митохондриальных рибосом. Здесь находится собственная ДНК митохондрий

Осуществляет первую стадию дыхания - цикл Кребса, в результате которого образуется 2 молекулы АТФ

Главная функция митохондрии - генерация энергии клетки в виде молекул АТФ за счёт реакции окислительного фосфорилирования - клеточного дыхания.

Помимо митохондрий в клетках растений присутствуют дополнительные полуавтономные органеллы - пластиды.
В зависимости от функционального назначения различают три вида пластид:

  • хромопласты - накапливают и хранят пигменты (каротины) разных оттенков, придающих окраску цветков растений;
  • лейкопласты - запасают питательные вещества, например, крахмал, в виде зерён и гранул;
  • хлоропласты - наиболее важные органеллы, содержащие зелёный пигмент (хлорофилл), придающий окраску растениям, и осуществляющие фотосинтез.

Рис. 3. Пластиды.

Что мы узнали?

Рассмотрели особенности строения митохондрий - двумембранных органелл, осуществляющих клеточное дыхание. Наружная мембрана состоит из белков и липидов и производит транспорт веществ. Внутренняя мембрана образует складки - кристы, на которых происходит окисление водорода. Кристы окружает матрикс - гелеобразное вещество, в котором протекает часть реакций клеточного дыхания. В матриксе находятся митохондриальные ДНК и РНК.

Тест по теме

Оценка доклада

Средняя оценка: 4.4 . Всего получено оценок: 105.

  • 6.Происхождение, строение и функции клеточной оболочки.
  • 7.Вакуоли. Состав и свойства клеточного сока. Осмотическое давление, тургор и плазмолиз.
  • 8.Клеточное ядро, его химический состав, строение, роль в жизнедеятельности клетки.
  • 9. Химические вещества клетки, их значение, локализация.
  • 10. Запасные формы углеводов в клетке.
  • 15. Запасные формы белков и жиров в клетке
  • 11. Растительные ткани, принципы классификации.
  • 12. Образовательные ткани: цитологические особенности, происхождение, локализация.
  • 13. Покровные ткани древесных частей растения: цитологические особенности, происхождение, локализация.
  • 14. Покровные ткани неодревесневших частей растения: цитологические особенности, происхождение, локализация.
  • 16. Основные ткани: цитологические особенности, происхождение, локализация.
  • 17. Механические ткани: цитологические особенности, происхождение, локализация.
  • 18. Выделительные ткани: цитологические особенности, происхождение, локализация.
  • 19. Токи веществ в растении. Проводящие ткани: цитологические особенности, происхождение, локализация.
  • 20. Сосудисто-волокнистые пучки: происхождение, строение, локализация в растениях.
  • 21. Анатомическое строение корня однодольных растений (одно- и многолетних).
  • 22. Анатомическое строение корня двудольных растений (одно- и многолетних).
  • 30. Морфологическое строение корня. Функции и метаморфозы корня.
  • 23. Анатомическое строение стеблей травянистых и древесных однодольных растений.
  • 28. Анатомическое строение различных типов листьев.
  • 33. Лист, его части. Функции и метаморфозы. Морфологическая характеристика листьев.
  • 29. Диагностические микроскопические признаки вегетативных органов, используемых в анализе лекарственного растительного сырья.
  • 32. Строение, расположение почек. Конусы нарастания.
  • 39. Микроспорогенез и формирование мужского гаметофита у покрытосеменных.
  • 40. Мегаспорогенез и формирование женского гаметофита у покрытосеменных.
  • 41. Опыление и оплодотворение у покрытосеменных.
  • 42. Образование, строение и классификация семян.
  • 46. Принципы классификации организмов. Искусственные, естественные, филогенетические системы. Современная классификация органического мира. Таксономические единицы. Вид как единица классификации.
  • 1. Надцарство доядерных организмов (Procaryota).
  • 2. Надцарство ядерных организмов (Eucaryota)
  • Различия представителей царств животные, грибы и растения:
  • 47. Классификация водорослей. Строение, размножение зеленых и бурых водорослей. Значение водорослей в народном хозяйстве и медицине.
  • 48. Грибы. Общая биологическая характеристика, классификация, значение. Хитридиомицеты и зигомицеты.
  • 49. Грибы. Общая биологическая характеристика, классификация, значение. Аскомицеты.
  • 50. Базидиальные и несовершенные грибы. Особенности биологии. Применение в медицине.
  • 3 Подкласса:
  • 51. Лишайники. Общая биологическая характеристика, классификация, значение.
  • 52. Отдел Моховидные. Общая биологическая характеристика, классификация, значение.
  • 53. Отдел Плауновидные. Общая биологическая характеристика, классификация, значение.
  • 54. Отдел Хвощевидные. Общая биологическая характеристика, классификация, значение.
  • Отдел голосеменные
  • 58. Главнейшие системы покрытосеменных. Система а.Л. Тахтаджяна.
  • 59. Класс магнолиопсиды. Характеристика основных порядков подкласса магнолииды.
  • 60. Подкласс Ранункулиды. Характеристика порядка Лютиковые.
  • 61. Подкласс Ранункулиды. Характеристика порядка Маковые.
  • 62. Подкласс Кариофиллиды. Характеристика порядка Гвоздичные.
  • 63. Подкласс Кариофиллиды. Характеристика порядка Гречишные.
  • 64. Подкласс Гамамелидиды. Характеристика порядка Буковые.
  • 65. Подкласс Дилленииды. Характеристика порядков: Тыквенные, Каперсовые, Фиалковые, Чайные.
  • 66. Подкласс Дилленииды. Характеристика порядков: Подкласс Дилленииды. Характеристика порядков: Первоцветные, Мальвоцветные.
  • 67. Подкласс Дилленииды. Характеристика порядков: Крапивные, Молочайные.
  • 68. Подкласс Дилленииды. Характеристика порядков: Ивовые, Вересковые.
  • 69. Подкласс Розиды. Характеристика порядков: Камнеломковые, Розоцветные.
  • 74. Подкласс Ламииды. Характеристика порядков: Горечавковые.
  • 78. Подкласс Астериды. Характеристика порядка Сложноцветные. Подсемейство Трубкоцветные.
  • 79. Подкласс Астериды. Характеристика порядка Сложноцветные. Подсемейство Языкоцветные.
  • 80. Подкласс Лилииды. Характеристика порядков Амариллисовые, Диоскорейные.
  • 81. Подкласс Лилииды. Характеристика порядков: Лилейные, Спаржевые.
  • 82. Подкласс Лилииды. Характеристика порядков: Орхидные, Осоковые.
  • 83. Подкласс Лилииды. Характеристика порядка Злаки.
  • 84. Подкласс Арециды. Характеристика порядков: Пальмы, Аронниковые.
  • 5.Пластиды, митохондрии, рибосомы. Происхождение, строение, функции.

    Пластиды - органоиды гиалоплазмы, характерные только для клеток растений. В зависимости от наличия пигментов различают 3 типа пластид: хлоропласты (зеленые), хромопласты (оранжевые, желтые, красные), лейкопласты (бесцветные). Рассмотрим их строение на примере хлоропластов . Размеры и число хлоропластов в клетке варьирует в зависимости от вида растения. Обычно это овальные или линзовидные тельца, длиной 4-7 мкм, толщиной 1-3 мкм. Число их в клетке может быть от 5-7 (у тополя в эпидерме) до 325 (в ли­стьях картофеля). Снаружи хлоропласты покрыты оболочкой из 2 мембран, внутренняя может образовывать в полость пластиды немногочисленные вы­росты. Под оболочкой находится тело пластиды - строма , структурной едини­цей которой являются тилакоиды - плоские мешковидные мембранные об­разования, содержащие пигменты. Тилакоиды, собранные в виде стопки, называются граны . На мембранах гран протекает световая фаза фотосинтеза, на мембранах тилакоидов стромы - темновая. В строме хлоропластов имеются также пластоглобулы - округлые включения жирных масел, рибосомы, ДНК, иногда крахмальные зерна, белковые кри­сталлы, микротрубочки.

    Пигменты, входящие в состав пластид, относятся к 3 классам: хлорофиллы, каротиноиды, фикобиллины. Хлорофиллы - а, b, с, d и т.д. отличаются друг от друга спектрами поглощения; ос­новным светоулавливающим пигментом является хлорофилл "а", а дополни­тельными - "b", "c", "d". К каротиноидам относятся каротины и ксантофиллы, также участвующие в фотосинтезе в качестве дополнительных пигментов. Кроме того, они придают окраску лепесткам многих растений (тюльпан, оду­ванчик и др.), плодов (шиповник, томаты, рябина), корнеплодов (морковь, свекла и др.) Фикобиллины - пигменты водорослей и цианобактерий (фикоэритрины у красных водорослей).

    В хлоропластах содержатся хлорофиллы и каротиноиды, но в различных соотношениях. Например, в листьях шпината Хлa :Хлb :Кар:Кс содержат­ся в соотношении 11:5:2:1 (Зейбольц, 1941). Хромопласты содержат каротиноиды, обычно растворенные в пластоглобулах. Отличаются меньшими размерами и слабо развитой внутренней мем­бранной системой. Лейкопласты - бесцветные, не содержащие пигментов пластиды, в связи с чем в них мало или нет тилакоидов. Их функция - синтез и накопление запас­ных питательных веществ: крахмала (амилопласты), реже белка (протеопласты), жирных масел (олеопласты). В онтогенезе все типы пластид способны превращаться друг в друга: лейко­пласты - > хлоропласты - > хромопласты. Иногда - хлоропласты - > лейкопласты; лейкопласты - > хромопласты. Считают, что хромопласты - этап старения пластид.

    Таким образом, при помощи пластид растения выполняют свою космическую роль и обеспечивают солнечной энергией процессы образования орга­нических веществ

    Митохондрии - небольшие тельца палочковидной формы, ограниченные двумя мембранами. От внутренней мембраны митохондрии отходят многочисленные складки - кристы, на их стенках располагаются разнообразные ферменты, с помощью которых осуществляется синтез высокоэнергетического вещества - аденозинтрифосфорной кислоты (АТФ). В зависимости от активности клетки и внешних воздействий митохондрии могут перемещаться, изменять свои размеры, форму. В митохондриях найдены рибосомы, фосфолипиды, РНК и ДНК. С присутствием ДНК в митохондриях связывают способность этих органоидов к размножению путем образования перетяжки или почкованием в период деления клетки, а также синтез части митохондриальных белков.

    Рибосомы встречаются во всех типах клеток - от бактерий до клеток многоклеточных организмов. Это округлые тельца, состоящие из рибонуклеиновой кислоты (РНК) и белков почти в равном соотношении. В их состав непременно входит магний, присутствие которого поддерживает структуру рибосом. Рибосомы могут быть связаны с мембранами эндоплазматической сети, с наружной клеточной мембраной или свободно лежать в цитоплазме. В них осуществляется синтез белков. Рибосомы кроме цитоплазмы встречаются в ядре клетки. Они образуются в ядрышке и затем поступают в цитоплазму.

    Рибосомы в клетках растений обнаружены в 1953 году Робинсоном и Броуном. Мелкие 100-150А, округлой формы, состоят из 2 частей (субъединиц) - большой и малой, объединенных предположительно Mg 2+ . В состав большой субъединицы входит одна молекула РНК высокого молекулярного веса (235) и одна молекула РНК меньшего (55) молекулярного веса и около 35 молекул бел­ков разного характера. В состав малой - молекула РНК и около 20 молекул различных белков. В молодых клетках расположены в цитоплазме свободно, в дифференци­рованных - прикреплены к поверхности наружной мембраны эндоплазматической сети группами (от 5 до 20), образуя полисомы . Между собою их связы­вает и РНК. РНК рибосом и транспортная РНК - цитоплазматического происхождения, инфор­мационная - ядерного, образуется на части молекулы ДНК ядра. Она и опре­деляет характер синтезируемого белка. Главная функция рибосом - синтез белка.

    1. системе полостей с пузырьками на концах

    2. множеству расположенных в ней гран

    3. системе разветвленных канальцев

    4. многочисленнымкристам на внутренней мембране

    КАКУЮ ФУНКЦИЮ ВЫПОЛНЯЕТ В КЛЕТКЕ КЛЕТОЧНЫЙ ЦЕНТР

    1. принимает участие в клеточном делении

    2. является хранилищем наследственной информации

    3. отвечает за биосинтез белка

    4. является центром матричного синтеза рибосомной РНК

    КАКИЕ ОБЩИЕ СВОЙСТВА ХАРАКТЕРНЫ ДЛЯ МИТОХОНДРИЙ И ХЛОРОПЛАСТОВ?

    1. не делятся в течение жизни клетки

    2. имеют собственный генетический материал

    3. являются одномембранными

    4. участвуют в фотосинтезе

    5. являются специальными органоидами

    ФУНКЦИЯ РИБОСОМ

    1. участвуют в реакциях окисления

    2. участвуют в синтезе белков

    3. участвуют в синтезе липидов

    4. участвуют в делении клетки

    ОСОБЕННОСТИ СТРОЕНИЯ РИБОСОМ

    1. отграничены от цитоплазмы одной мембраной

    2. состоят из двух частиц – большой и малой

    3. размещаются в цитоплазме и на каналах ЭПС

    4. размещаются в аппарате Гольджи


    10.ВЫБЕРИТЕ НЕМЕМБРАННЫЕ СТРУКТУРЫ

    1. центросома

    2. ЭПС, аппарат Гольджи, лизосомы

    3. рибосомы, микротрубочки, центриоли

    4. микрофиламенты, микротрубочки, жировые капли

    5. митохондрии, вакуоли, центриоли

    ДЛЯ МИТОХОНДРИЙ ХАРАКТЕРНО

    1. являются специальными органоидами

    2. образуются в клетке от аппарата Гольджи

    3. наружная и внутренняя мембраны митохондрий образуют кристы

    4. основная функция – синтез АТФ

    5. имеют собственную ДНК линейной формы

    ФУНКЦИЯ ЛИЗОСОМ

    1. расщепление полимеров до мономеров

    2. окисление органических веществ

    3. формирование цитоскелета

    4. синтез белков

    5. участвуют в делении клетки

    В ОБРАЗОВАНИИ ЦИТОСКЕЛЕТА ПРИНИМАЮТ УЧАСТИЕ

    1. микротрубочки и микрофиламенты

    2. микротрубочки и миофибриллы

    3. микрофиламенты, ЭПС, микроворсинки

    4. микроворсинки, миофибриллы

    КАКОЙ ОРГАНОИД СОДЕРЖИТ ГРАНЫ

    1. митохондрия

    2. хлоропласт

    3. клеточный центр

    5. аппарат Гольджи

    ФУНКЦИИ ЭПС В РАСТИТЕЛЬНОЙ КЛЕТКЕ

    1. внутриклеточное пищеварение

    2. образует первичные лизосомы

    3. участвует в фотосинтезе

    4. обеспечивает синтез некоторых липидов и углеводов

    5. участвует в синтезе АТФ

    РАЗДЕЛ 2.

    СТРОЕНИЕ И ФУНКЦИИ МЕМБРАН

    ХИМИЧЕСКИЙ СОСТАВ ПЛАЗМАЛЕММЫ ВКЛЮЧАЕТ

    1. липиды и белки

    2. белки, жиры, углеводы

    3. липиды, белки, нуклеиновые кислоты

    4. белки, углеводы, нуклеиновые кислоты

    5. липиды, белки, олигосахариды

    НАЗОВИТЕ ХИМИЧЕСКИЕ СОЕДИНЕНИЯ, МОЛЕКУЛЫ КОТОРЫХ ОБЕСПЕЧИВАЮТ ТАКОЕ СВОЙСТВО МЕМБРАНЫ, КАК ТЕКУЧЕСТЬ.

    1. олигосахариды

    3. фосфолипиды

    5. целлюлоза

    УКАЖИТЕ ВИД ТРАНСПОРТА ВЕЩЕСТВ ЧЕРЕЗ МЕМБРАНУ КЛЕТКИ, КОТОРЫЙ ТРЕБУЕТ ЭНЕРГИИ АТФ

    1. фагоцитоз

    2. диффузия через канал

    3. облегченная диффузия

    4. простая диффузия

    ЭРИТРОЦИТЫ ЧЕЛОВЕКА ПОМЕСТИЛИ В РАСТВОР ХЛОРИДА НАТРИЯ. ЧЕРЕЗ 30 МИНУТ ОНИ НЕ ИЗМЕНИЛИ СВОЕЙ ФОРМЫ И ОБЪЕМА. КАКИМ ЯВЛЯЕТСЯ ЭТОТ РАСТВОР ПО ОТНОШЕНИЮ К КЛЕТКАМ ЧЕЛОВЕКА?

    1. изотоническим

    2. гипертоническим

    3. гипотоническим

    4. коллоидным

    5.КОНЦЕНТРАЦИЯ РАСТВОРА ХЛОРИДА НАТРИЯ РАВНА 0,3%. КАКИМ ЯВЛЯЕТСЯ ЭТОТ РАСТВОР ПО ОТНОШЕНИЮ К КЛЕТКАМ ЧЕЛОВЕКА?

    1. изотоническим

    2. гипертоническим

    3. гипотоническим

    4. физиологическим

    ЭРИТРОЦИТЫ ЧЕЛОВЕКА ПОМЕСТИЛИ В РАСТВОР NACL. ЧЕРЕЗ НЕСКОЛЬКО МИНУТ ОНИ УВЕЛИЧИЛИСЬ В ОБЪЕМЕ, А ЗАТЕМ ЛОПНУЛИ. КАКИМ ЯВЛЯЕТСЯ ЭТОТ РАСТВОР ПО ОТНОШЕНИЮ К КЛЕТКАМ ЧЕЛОВЕКА?

    1. изотоническим

    2. гипертоническим

    3. гипотоническим

    4. физиологическим

    7.КОНЦЕНТРАЦИЯ РАСТВОРА ХЛОРИДА НАТРИЯ РАВНА 9%. КАКИМ ЯВЛЯЕТСЯ ЭТОТ РАСТВОР ПО ОТНОШЕНИЮ К КЛЕТКАМ ЧЕЛОВЕКА?

    1. изотоническим

    2. гипертоническим

    3. гипотоническим

    4. физиологическим

    РАЗРУШЕНИЕ КЛЕТКИ В ГИПОТОНИЧЕСКОМ РАСТВОРЕ НАЗЫВАЕТСЯ

    1. плазмолиз

    2. гемолиз

    3. цитолиз

    4. деплазмолиз

    СМОРЩИВАНИЕ КЛЕТКИ В ГИПЕРТОНИЧЕСКОМ РАСТВОРЕ НАЗЫВАЕТСЯ

    1. плазмолиз

    2. гемолиз

    3. цитолиз

    4. деплазмолиз

    10.ФАГОЦИТОЗ ПРЕДСТАВЛЯЕТ СОБОЙ:

    1. активный перенос жидкости с растворенными в ней веществами

    2. захват плазматической мембраной твердых частиц и их втягивание в клетку

    3. избирательный транспорт в клетку растворимых органических веществ

    4. пассивное поступление в клетку воды и некоторых ионов

    РАЗДЕЛ 3.

    СТРОЕНИЕ И ФУНКЦИИ ЯДРА.

    НАСЛЕДСТВЕННЫЙ АППАРАТ КЛЕТКИ.


    ХРАНЕНИЕ И ПЕРЕДАЧУ НАСЛЕДСТВЕННОЙ ИНФОРМАЦИИ ОБЕСПЕЧИВАЕТ

    1. ядерная оболочка

    2. ядрышко

    3. хроматин

    4. кариоплазма

    5. клеточный центр

    СТРУКТУРНО-ФУНКЦИОНАЛЬНОЙ ЕДИНИЦЕЙ ХРОМОСОМЫ ЯВЛЯЕТСЯ

    1. гетерохроматин

    2. нуклеотид

    3. нуклеосома

    4. гистоновые белки

    СОВОКУПНОСТЬ МОРФОЛОГИЧЕСКИХ ПРИЗНАКОВ ХРОМОСОМ ВИДА НАЗЫВАЕТСЯ

    1. генотип

    2. фенотип

    3. кариотип

    4. кариограмма

    ЯДРЫШКО ВЫПОЛНЯЕТ ФУНКЦИЮ

    1. хранение наследственной информации

    2. синтез рРНК

    3. синтез белка

    4. синтез АТФ

    5. деление ядра

    ФУНКЦИИ ЯДРА ВКЛЮЧАЮТ

    1. синтез молекул ДНК и РНК

    2. окисление органических веществ с освобождением энергии

    3. поглощение веществ из окружающей среды

    4. образование органических веществ из неорганических

    5. образование запасных питательных веществ

    ВЫБЕРИТЕ УТВЕРЖДЕНИЕ, ОТНОСЯЩИЕСЯ К ГЕТЕРОХРОМАТИНУ

    3. спирализованный, хорошо окрашивается, не транскрибируется

    4. деспирализованный, транскрибируется, плохо окрашивается

    ВЫБЕРИТЕ УТВЕРЖДЕНИЕ, ОТНОСЯЩИЕСЯ К ЭУРОХРОМАТИНУ

    1. спирализованный, активный, хорошо окрашивается

    2. неактивный, не транскрибируется, деспирализованный

    3. спирализованный, хорошо окрашивается, не транскрибируется

    4. деспирализованный, транскрибируется, плохо окрашивается

    ХИМИЧЕСКИЙ СОСТАВ ХРОМАТИНА

    1. 95% ДНК и 5% белков

    2. 60% гистоновые и негистоновые белки и 40% - ДНК

    3. белки 60%, РНК 40%

    4. ДНК 40%, белки 40%, РНК 20%

    В СИНТЕЗЕ РИБОСОМНЫХ РНК ПРИНИМАЕТ УЧАСТИЕ

    1. ядерные поры

    2. первичные перетяжки хромосом

    3. ядрышко

    4. перинуклеарное пространство

    ВТОРИЧНАЯ ПЕРЕТЯЖКА ХРОМОСОМ УЧАСТВУЕТ В

    1. прикреплении нитей веретена деления

    2. образовании ядрышка

    3. образовании ядерной оболочки

    4. синтезе белка

    БЕЛКИ- ГИСТОНЫ ВЫПОЛНЯЮТ ФУНКЦИЮ

    1. Хранение генетической информации

    2. участвуют в упаковке молекул ДНК

    3. участвуют в репликации ДНК

    4. участвуют в транскрипции

    5. участвуют в реализации генетической информации

    ВЫБЕРИТЕ ПРАВИЛЬНЫЕ УТВЕРЖДЕНИЯ, КАСАЮЩИЕСЯ ХРОМОСОМ

    1. основу хромосомы составляет одна непрерывная двухцепочечная молекула ДНК

    2. хромосомы хорошо видны в интерфазе

    3. в процессе жизнедеятельности клеток число хромосом изменяется

    4. в синтетическом периоде интерфазы происходит удвоение числа хромосом

    НОРМАЛЬНЫЙ КАРИОТП ЖЕНЩИНЫ ВКЛЮЧАЕТ

    2. 44 аутосомы, Х и У- хромосомы

    3. 22 пары аутосом и две Х- хромосомы

    4. 23 пары аутосом

    НОРМАЛЬНЫЙ КАРИОТИП МУЖЧИНЫ ВКЛЮЧАЕТ

    1. 44пары аутосом и две Х- хромосомы

    2. 22 пары аутосом, Х и У- хромосому

    3. 22 пары аутосом и две Х- хромосомы

    4. 23 пары аутосом

    РАЗДЕЛ 4.

    ЖИЗНЕННЫЙ ЦИКЛ КЛЕТКИ. ДЕЛЕНИЕ КЛЕТКИ.

    ЗНАЧЕНИЕ МИТОЗА СОСТОИТ В УВЕЛИЧЕНИИ ЧИСЛА

    1. хромосом в дочерних клетках по сравнению с материн­ской

    2. клеток с набором хромосом, равным материнской клетке

    3. молекул ДНК в дочерних клетках по сравнению с мате­ринской

    4. клеток с уменьшенным вдвое набором хромосом

    РАСТВОРЕНИЕ ЯДЕРНОЙ ОБОЛОЧКИ И ЯДРЫШЕК В ПРОЦЕССЕ МИТОЗА ПРОИСХОДИТ В

    1. интерфазе

    2. профазе

    3. метафазе

    4. анафазе

    5. телофазе

    КАКИЕ ПРОЦЕССЫ ПРОТЕКАЮТ ВО ВРЕМЯ МЕЙОЗА?

    1. транскрипция

    2. денатурация

    3. конъюгация и кроссинговер

    4. увеличение числа хромосом

    5. трансляция

    ВЕРЕТЕНО ДЕЛЕНИЯ ОБРАЗУЮТ

    1. актиновые волокна (микрофиламенты)

    2. миозиновые волокна

    3. микротрубочки

    4. миофибриллы

    5. коллагеновые волокна

    РЕДУПЛИКАЦИЯ ДНК ПРОИСХОДИТ В

    1. интерфазе

    2. профазе

    3. метафазе

    4. анафазе

    5. телофазе

    ХРОМОСОМЫ РАСПОЛОЖЕНЫ НА ЭКВАТОРЕ КЛЕТКИ В

    1. интерфазе

    2. профазе

    3. метафазе

    4. анафазе

    5. телофазе

    РАСХОЖДЕНИЕ ХРОМАТИД К ПОЛЮСАМ КЛЕТКИ ПРОИСХОДИТ В

    1. интерфазе

    2. профазе

    3. метафазе

    4. анафазе

    5. телофазе

    РАСХОЖДЕНИЕ ГОМОЛОГИЧНЫХ ХРОМОСОМ ПРОИСХОДИТ В

    1. анафазе мейоза 1

    2. метафазе мейоза 1

    3. метафазе мейоза 2

    4. анафазе мейоза 2

    9.В КАКОМ ОТВЕТЕ ПРАВИЛЬНО УКАЗАНА ПОСЛЕДО­ВАТЕЛЬНОСТЬ ФАЗ МИТОЗА?

    1. метафаза, профаза, телофаза, анафаза

    2. профаза, анафаза, телофаза, метафаза

    3. телофаза, метафаза, анафаза, профаза

    4. профаза, метафаза, анафаза, телофаза