Структура алмаза (а) и графита (б)

Углерод (латинское Carboneum ) - С, химический элемент IV группы периодической системы Менделеева, атомный номер 6, атомная масса 12,011. Встречается в природе в виде кристаллов алмаза, графита или фуллерена и других форм и входит в состав органических (уголь, нефть, организмы животных и растений и др.) и неорганических веществ (известняк, пищевая сода и др.). Углерод широко распространен, но содержание его в земной коре всего 0,19%.

Углерод широко используется в виде простых веществ. Кроме драгоценных алмазов, являющихся предметом ювелирных украшений, большое значение имеют промышленные алмазы - для изготовления шлифовального и режущего инструмента. Древесный уголь и другие аморфные формы углерода применяются для обесцвечивания, очистки, адсорбции газов, в областях техники, где требуются адсорбенты с развитой поверхностью. Карбиды , соединения углерода с металлами , а также с бором и кремнием (например, Al 4 C 3 , SiC, B 4 C) отличаются высокой твердостью и используются для изготовления абразивного и режущего инструмента. Углерод входит в состав сталей и сплавов в элементном состоянии и в виде карбидов . Насыщение поверхности стальных отливок углеродом при высокой температуре (цементация) значительно увеличивает поверхностную твердость и износостойкость .

Историческая справка

Графит, алмаз и аморфный углерод известны с древности. Издавна известно, что графитом можно маркировать другой материал, и само название "графит", происходящее от греческого слова, означающего "писать", предложено А.Вернером в 1789. Однако история графита запутана, часто за него принимали вещества, обладающие сходными внешними физическими свойствами, например молибденит (сульфид молибдена), одно время считавшийся графитом. Среди других названий графита известны "черный свинец", "карбидное железо", "серебристый свинец".

В 1779 К.Шееле установил, что графит можно окислить воздухом с образованием углекислого газа . Впервые алмазы нашли применение в Индии, а в Бразилии драгоценные камни приобрели коммерческое значение в 1725; месторождения в Южной Африке были открыты в 1867.

В 20 в. основными производителями алмазов являются ЮАР, Заир, Ботсвана, Намибия, Ангола, Сьерра-Леоне, Танзания и Россия. Искусственные алмазы, технология которых была создана в 1970, производятся для промышленных целей.

Свойства

Известны четыре кристаллические модификации углерода:

  • графит,
  • алмаз,
  • карбин,
  • лонсдейлит.

Графит - серо-чёрная, непрозрачная, жирная на ощупь, чешуйчатая, очень мягкая масса с металлическим блеском. При комнатной температуре и нормальном давлении (0,1 Мн/м 2 , или 1 кгс/см 2) графит термодинамически стабилен.

Алмаз - очень твёрдое, кристаллическое вещество. Кристаллы имеют кубическую гранецентрированную решётку. При комнатной температуре и нормальном давлении алмаз метастабилен. Заметное превращение алмаза в графит наблюдается при температурах выше 1400°С в вакууме или в инертной атмосфере. При атмосферном давлении и температуре около 3700 °С графит возгоняется .

Жидкий углерод может быть получен при давлениях выше 10,5 Мн/м 2 (105 кгс/см 2) и температурах выше 3700 °С. Для твёрдого углерода (кокс, сажа, древесный уголь) характерно также состояние с неупорядоченной структурой - так называемый «аморфный» углерод, который не представляет собой самостоятельной модификации; в основе его строения лежит структура мелкокристаллического графита. Нагревание некоторых разновидностей «аморфного» углерода выше 1500-1600 °С без доступа воздуха вызывает их превращение в графит.

Физические свойства «аморфного» углерода очень сильно зависят от дисперсности частиц и наличия примесей. Плотность , теплоёмкость , теплопроводность и электропроводность «аморфного» углерода всегда выше, чем графита.

Карбин получен искусственно. Он представляет собой мелкокристаллический порошок чёрного цвета (плотность 1,9-2 г/см 3). Построен из длинных цепочек атомов С , уложенных параллельно друг другу.

Лонсдейлит найден в метеоритах и получен искусственно; его структура и свойства окончательно не установлены.

Свойства углерода
Атомный номер 6
Атомная масса 12,011
Изотопы: стабильные 12, 13
нестабильные 8, 9, 10, 11, 14, 15, 16, 17, 18, 19, 20, 21, 22
Температура плавления 3550°С
Температура кипения 4200°С
Плотность 1,9-2,3 г/см 3 (графит)

3,5-3,53 г/см 3 (алмаз)

Твердость (по Моосу) 1-2
Содержание в земной коре (масс.) 0,19%
Степени окисления -4; +2; +4

Сплавы

Сталь

Кокс применяют в металлургии, как восстановитель. Древесный уголь – в кузнечных горнах, для получения пороха (75%KNO 3 + 13%C + 12%S), для поглощения газов (адсорбция), а также в быту. Сажу применяют, как наполнитель резины, для изготовления черных красок – типографская краска и тушь, а также в сухих гальванических элементах. Стеклоуглерод применяют для изготовления аппаратуры для сильно агрессивных сред, а также в авиации и космонавтике.

Активированный уголь поглощает вредные вещества из газов и жидкостей: им заполняют противогазы, очистительные системы, его применяют в медицине при отравлениях.

Углерод является основой всех органических веществ. Любой живой организм состоит в значительной степени из углерода. Углерод - основа жизни. Источником углерода для живых организмов обычно является СО 2 из атмосферы или воды. В результате фотосинтеза он попадает в биологические пищевые цепи, в которых живые существа поедают друг друга или останки друг друга и тем самым добывают углерод для строительства собственного тела. Биологический цикл углерода заканчивается либо окислением и возврашением в атмосферу, либо захоронением в виде угля или нефти.

Применение радиоактивного изотопа 14 C способствовало успехам молекулярной биологии в изучении механизмов биосинтеза белка и передачи наследственной информации. Определение удельной активности 14 C в углеродсодержащих органических остатках позволяет судить об их возрасте, что используется в палеонтологии и археологии.

Источники

ОПРЕДЕЛЕНИЕ

Углерод - шестой элемент Периодической таблицы. Обозначение - С от латинского «carboneum». Расположен во втором периоде, IVА группе. Относится к неметаллам. Заряд ядра равен 6.

Углерод находится в природе как в свободном состоянии, так и в виде многочисленных соединений. Свободный углерод встречается в виде алмаза и графита. Кроме ископаемого угля, в недрах Земли находятся большие скопления нефти. В земной коре встречаются в огромных количествах соли угольной кислоты, особенно карбонат кальция. В воздухе всегда имеется диоксид углерода. Наконец, растительные и животные организмы состоят из веществ, в образовании которых участие принимает углерод. Таким образом, этот элемент - один из распространенных на Земле, хотя общее его содержание в земной коре составляет всего около 0,1% (масс.).

Атомная и молекулярная масса углерода

Относительной молекулярная масса вещества (M r) - это число, показывающее, во сколько раз масса данной молекулы больше 1/12 массы атома углерода, а относительная атомная масса элемента (A r) — во сколько раз средняя масса атомов химического элемента больше 1/12 массы атома углерода.

Поскольку в свободном состоянии углерод существует в виде одноатомных молекул С, значения его атомной и молекулярной масс совпадают. Они равны 12,0064.

Аллотропия и аллотропные модификации углерода

В свободном состоянии углерод существует в виде алмаза, кристаллизующегося в кубической и гексагональной (лонсдейлит) системе, и графита, принадлежащего к гексагональной системе (рис. 1). Такие формы углерода, как древесный уголь, кокс или сажа имеют неупорядоченную структуру. Также есть аллотропные модификации, полученные синтетическим путем - это карбин и поликумулен - разновидности углерода, построенные из линейных цепных полимеров типа -C= C- или = C = C= .

Рис. 1. Аллотропные модификации углерода.

Известны также аллотропные модификации углерода, имеющие следующие названия: графен, фуллерен, нанотрубки, нановолокна, астрален, стеклоуглерож, колоссальные нанотрубки; аморфный углерод, углеродные нанопочки и углеродная нанопена.

Изотопы углерода

В природе углерод существует в виде двух стабильных изотопов 12 С (98,98%) и 13 С (1,07%). Их массовые числа равны 12 и 13 соответственно. Ядро атома изотопа углерода 12 С содержит шесть протонов и шесть нейтронов, а изотопа 13 С - такое же количество протонов и пять нейтронов.

Существует один искусственный (радиоактивный) изотоп углерода 14 Сс периодом полураспада равным 5730 лет.

Ионы углерода

На внешнем энергетическом уровне атома углерода имеется четыре электрона, которые являются валентными:

1s 2 2s 2 2p 2 .

В результате химического взаимодействия углерод может терять свои валентные электроны, т.е. являться их донором, и превращаться в положительно заряженные ионы или принимать электроны другого атома, т.е. являться их акцептором, и превращаться в отрицательно заряженные ионы:

С 0 -2e → С 2+ ;

С 0 -4e → С 4+ ;

С 0 +4e → С 4- .

Молекула и атом углерода

В свободном состоянии углерод существует в виде одноатомных молекул С. Приведем некоторые свойства, характеризующие атом и молекулу углерода:

Сплавы углерода

Наиболее известные сплавы углерода во всем мире - это сталь и чугун. Сталь - это сплав железа с углеродом, содержание углерода в котором не превышает 2%. В чугуне (тоже сплав железа с углеродом) содержание углерода выше - от 2-х до 4%.

Примеры решения задач

ПРИМЕР 1

Задание Какой объем оксида углерода (IV) выделится (н.у.) при обжиге 500 г известняка, содержащего 0,1 массовую долю примесей.
Решение Запишем уравнение реакции обжига известняка:

CaCO 3 = CaO + CO 2 -.

Найдем массу чистого известняка. Для этого сначала определим его массовую долю без примесей:

w clear (CaCO 3) = 1 — w impurity = 1 - 0,1 = 0,9.

m clear (CaCO 3) = m(CaCO 3) ×w clear (CaCO 3);

m clear (CaCO 3) = 500 ×0,9 = 450 г.

Рассчитаем количество вещества известняка:

n(CaCO 3) = m clear (CaCO 3) / M(CaCO 3);

n(CaCO 3) = 450 / 100 = 4,5 моль.

Согласно уравнению реакции n(CaCO 3) :n(CO 2) = 1:1, значит

n(CaCO 3) = n(CO 2) = 4,5 моль.

Тогда, объем выделившегося оксида углерода (IV) будет равен:

V(CO 2) = n(CO 2) ×V m ;

V(CO 2) = 4,5 × 22,4 = 100,8 л.

Ответ 100,8 л

ПРИМЕР 2

Задание Сколько потребуется раствора, содержащего 0,05 массовых долей, или 5% хлороводорода, для нейтрализации 11,2 г карбоната кальция?
Решение Запишем уравнение реакции нейтрализации карбоната кальция хлороводородом:

CaCO 3 + 2HCl = CaCl 2 + H 2 O + CO 2 -.

Найдем количество вещества карбоната кальция:

M(CaCO 3) = A r (Ca) + A r (C) + 3×A r (O);

M(CaCO 3) = 40 + 12 + 3×16 = 52 + 48 = 100 г/моль.

n(CaCO 3) = m (CaCO 3) / M(CaCO 3);

n(CaCO 3) = 11,2 / 100 = 0,112 моль.

Согласно уравнению реакции n(CaCO 3) :n(HCl) = 1:2, значит

n(HCl) = 2 ×n(CaCO 3) = 2 ×0,224 моль.

Определим массу вещества хлороводорода, содержащуюся в растворе:

M(HCl) = A r (H) + A r (Cl) = 1 + 35,5 = 36,5 г/моль.

m(HCl) = n(HCl) ×M(HCl) = 0,224 × 36,5 = 8,176 г.

Рассчитаем массу раствора хлороводорода:

m solution (HCl) = m(HCl)× 100 / w(HCl);

m solution (HCl) = 8,176 × 100 / 5 = 163,52 г.

Ответ 163,52 г

Углерод (от латинского: carbo «уголь») представляет собой химический элемент с символом С и атомным номером 6. Для образования ковалентных химических связей, доступны четыре электрона. Вещество является неметаллическим и четырехвалентным. Три изотопа углерода встречаются естественным образом, 12С и 13С стабильны, а 14С – радиоактивный изотоп, затухающий с периодом полураспада около 5730 лет . Углерод – один из немногих элементов, известных с древности. Углерод – это 15-й наиболее распространенный элемент в земной коре, и четвертый наиболее распространенный элемент во Вселенной по массе после водорода, гелия и кислорода. Обилие углерода, уникальное разнообразие его органических соединений и его необычная способность образовывать полимеры при температурах, обычно встречающихся на Земле, позволяют этому элементу служить общим элементом для всех известных форм жизни. Это второй наиболее распространенный элемент в человеческом теле по массе (около 18,5%) после кислорода. Атомы углерода могут связываться по-разному, называясь при этом аллотропами углерода. Наиболее известными аллотропами являются графит, алмаз и аморфный углерод. Физические свойства углерода широко варьируются в зависимости от аллотропной формы. Например, графит непрозрачен и черный, а алмаз – очень прозрачный. Графит достаточно мягкий, чтобы образовывать полосу на бумаге (отсюда и его название, от греческого глагола «γράφειν», что означает «писать»), в то время как алмаз является самым твердым известным в природе материалом. Графит является хорошим электрическим проводником, а алмаз имеет низкую электропроводность. В обычных условиях, алмаз, углеродные нанотрубки и графен имеют самую высокую теплопроводность среди всех известных материалов. Все углеродные аллотропы являются твердыми веществами в нормальных условиях, причем графит является наиболее термодинамически стабильной формой. Они химически устойчивы и требуют высокой температуры, чтобы реагировать даже с кислородом. Наиболее распространенное состояние окисления углерода в неорганических соединениях составляет +4, и +2 – в карбоксильных комплексах монооксида углерода и переходного металла. Крупнейшими источниками неорганического углерода являются известняки, доломиты и двуокись углерода, но значительные количества происходят из органических отложений угля, торфа, нефти и метанатных клатратов. Углерод образует огромное количество соединений, больше, чем любой другой элемент, с почти десятимиллионным количеством соединений, описанных до настоящего времени, и, тем не менее, это число является лишь частью числа теоретически возможных соединений в стандартных условиях. По этой причине, углерод часто упоминается как «царь элементов» .

Характеристики

Аллотропы углерода включают графит, одно из самых мягких из известных веществ, и алмаз, самое твердое природное вещество. Углерод легко связывается с другими малыми атомами, включая другие атомы углерода, и способен образовывать многочисленные устойчивые ковалентные связи с подходящими многовалентными атомами. Известно, что углерод образует почти десять миллионов различных соединений, подавляющее большинство всех химических соединений. Углерод также имеет самую высокую точку сублимации среди всех элементов. При атмосферном давлении, он не имеет температуры плавления, так как его тройная точка составляет 10,8 ± 0,2 МПа и 4600 ± 300 К (~ 4330 ° С или 7 820 ° F), поэтому он возгоняется при температуре около 3900 К. Графит гораздо более реактивный, чем алмаз, в стандартных условиях, несмотря на то, что он более термодинамически стабилен, поскольку его делокализованная система pi гораздо более уязвима для атаки. Например, графит может быть окислен горячей концентрированной азотной кислотой в стандартных условиях до меллитовой кислоты C6 (CO2H) 6, которая сохраняет гексагональные единицы графита при разрушении большей структуры. Углерод возгоняется в углеродистой дуге, температура которой составляет около 5800 К (5 530 ° С, 9 980 ° F). Таким образом, независимо от его аллотропной формы, углерод остается твердым при более высоких температурах, чем самые высокие температуры плавления, такие как вольфрам или рений. Хотя термодинамически углерод склонен к окислению, он более устойчив к окислению, чем такие элементы, как железо и медь, которые являются более слабыми восстановителями при комнатной температуре. Углерод – шестой элемент с электронной конфигурацией основного состояния 1s22s22p2, из которых четыре внешних электрона являются валентными электронами. Его первые четыре энергии ионизации 1086,5, 2352,6, 4620,5 и 6222,7 кДж / моль, намного выше, чем у более тяжелых элементов группы 14. Электроотрицательность углерода составляет 2,5, что значительно выше, чем у более тяжелых элементов 14 группы (1,8-1,9), но близка к большинству соседних неметаллов, а также к некоторым переходным металлам второго и третьего ряда. Ковалентные радиусы углерода обычно принимаются как 77,2 пм (C-C), 66,7 пм (C = C) и 60,3 пм (C≡C), хотя они могут варьироваться в зависимости от координационного числа и от того, с чем связан углерод. В общем случае, ковалентный радиус уменьшается при уменьшении координационного числа и увеличении порядка связей. Углеродные соединения составляют основу всех известных форм жизни на Земле, а углерод-азотный цикл обеспечивает некоторую энергию, выделяемую Солнцем и другими звездами. Хотя углерод образует необычайное разнообразие соединений, большинство форм углерода сравнительно не реагируют в нормальных условиях. При стандартных температурах и давлении, углерод выдерживает все, кроме самых сильных окислителей. Он не реагирует с серной кислотой, соляной кислотой, хлором или щелочами. При повышенных температурах, углерод реагирует с кислородом с образованием оксидов углерода и убирает кислород из оксидов металлов, оставляя элементный металл. Эта экзотермическая реакция используется в черной металлургии для плавки железа и контроля содержания углерода в стали:

    Fe3О4 + 4 C (s) → 3 Fe (s) + 4 CO (g)

с серой с образованием дисульфида углерода и с паром в реакции уголь-газ:

    C (s) + H2O (g) → CO (g) + H2 (g)

Углерод сочетается с некоторыми металлами при высоких температурах с образованием металлических карбидов, таких как цементит из карбида железа в стали и карбид вольфрама, широко используемый в качестве абразива и для изготовления жестких наконечников для режущих инструментов. Система аллотропов углерода охватывает ряд экстремумов:

Некоторые виды графита используются для теплоизоляции (например, противопожарные преграды и теплозащитные экраны), но некоторые другие формы являются хорошими тепловыми проводниками. Алмаз – самый известный природный теплопроводник. Графит непрозрачен. Алмаз очень прозрачный. Графит кристаллизуется в гексагональной системе . Алмаз кристаллизуется в кубической системе. Аморфный углерод полностью изотропный. Углеродные нанотрубки являются одними из самых известных анизотропных материалов.

Аллотропы углерода

Атомный углерод является очень недолговечным видом, и поэтому углерод стабилизируется в различных многоатомных структурах с различными молекулярными конфигурациями, называемыми аллотропами. Три относительно известных аллотропа углерода – аморфный углерод, графит и алмаз. Ранее считавшиеся экзотическими, фуллерены в настоящее время обычно синтезируются и используются в исследованиях; они включают бакиболы, углеродные нанотрубки, углеродные наноточки и нановолокна. Также было обнаружено несколько других экзотических аллотропов, таких как лонсалетит, стеклоуглерод, углеродный нанофаум и линейный ацетиленовый углерод (карбин). По состоянию на 2009 год, графен считается наиболее сильным материалом среди всех, когда-либо протестированных. Процесс отделения его от графита потребует некоторого дальнейшего технологического развития, прежде чем он станет экономичным для промышленных процессов. В случае успеха, графен можно будет использовать при строительстве космических лифтов. Он также может быть использован для безопасного хранения водорода для использования в двигателях на основе водорода в автомобилях. Аморфная форма представляет собой набор атомов углерода в некристаллическом, нерегулярном, стекловидном состоянии, а не содержащихся в кристаллической макроструктуре. Она присутствует в виде порошка и является основным компонентом таких веществ, как древесный уголь, ламповая копоть (сажа) и активированный уголь. При нормальных давлениях, углерод имеет форму графита, в котором каждый атом тригонально связан тремя другими атомами в плоскости, состоящей из сплавленных гексагональных колец, как и в ароматических углеводородах . Полученная сеть является двухмерной, и полученные плоские листы складываются и свободно связываются через слабые силы Ван-дер-Ваальса. Это дает графиту его мягкость и свойства расщепления (листы легко проскальзывают друг за другом). Из-за делокализации одного из внешних электронов каждого атома с образованием π-облака, графит проводит электричество, но только в плоскости каждого ковалентно связанного листа. Это приводит к более низкой удельной электропроводности для углерода, чем для большинства металлов. Делокализация также объясняет энергетическую стабильность графита над алмазом при комнатной температуре. При очень высоких давлениях, углерод образует более компактный аллотроп, алмаз, имеющий почти вдвое большую плотность, чем графит. Здесь каждый атом тетраэдрически соединен с четырьмя другими, образуя трехмерную сеть сморщенных шестичленных колец атомов. Алмаз имеет ту же кубическую структуру, что кремний и германий, и из-за прочности углерод-углеродных связей он является самым твердым природным веществом, что измеряется по сопротивлению царапинам. Вопреки распространенному мнению, что «алмазы вечны», они термодинамически нестабильны в нормальных условиях и превращаются в графит. Из-за высокого энергетического барьера активации, переход в форму графита настолько медленный при нормальной температуре, что он незаметен. При некоторых условиях, углерод кристаллизуется как лонсалейт, гексагональная кристаллическая решетка со всеми ковалентно связанными атомами и свойствами, аналогичными свойствам алмаза. Фуллерены представляют собой синтетическое кристаллическое образование с графитоподобной структурой, но вместо шестиугольников фуллерены состоят из пятиугольников (или даже семиугольников) атомов углерода. Отсутствующие (или дополнительные) атомы деформируют листы в сферы, эллипсы или цилиндры. Свойства фуллеренов (разделенных на бакиболы, бакитубы и нанобады) еще не полностью проанализированы и представляют собой интенсивную область исследований наноматериалов. Названия «фуллерен» и «бакибол» связаны с именем Ричарда Бакминстера Фуллера, популяризатора геодезических куполов, которые напоминают структуру фуллеренов. Бакиболы представляют собой довольно крупные молекулы, образованные полностью из углеродных связей тригонально, образуя сфероиды (наиболее известным и простейшим является баксинистерфеллерен C60 с формой футбольного мяча). Углеродные нанотрубки структурно подобны бакиболам, за исключением того, что каждый атом связан тригонально в изогнутом листе, который образует полый цилиндр. Нанобады впервые были представлены в 2007 году и представляют собой гибридные материалы (бакиболы ковалентно связаны с внешней стенкой нанотрубки), которые сочетают свойства обоих в одной структуре. Из других обнаруженных аллотропов, углеродная нанопена является ферромагнитным аллотропом, обнаруженным в 1997 году. Она состоит из кластерной сборки атомов углерода с низкой плотностью, натянутых вместе в рыхлую трехмерную сеть, в которой атомы тригонально связаны в шести- и семичленных кольцах. Она относится к числу самых легких твердых веществ с плотностью около 2 кг / м3. Аналогичным образом, стеклообразный углерод содержит высокую долю закрытой пористости, но, в отличие от обычного графита, графитовые слои не сложены в виде страниц в книге, но имеют более случайное расположение. Линейный ацетиленовый углерод имеет химическую структуру - (C::: C) n-. Углерод в этой модификации является линейным с орбитальной гибридизацией sp и является полимером с чередующимися одиночными и тройными связями. Этот карбин представляет значительный интерес для нанотехнологий, поскольку его модуль Юнга в сорок раз больше, чем у самого твердого материала – алмаза. В 2015 году команда из Университета Северной Каролины объявила о разработке еще одного аллотропа, который они назвали Q-углерод, созданный высокоэнергетическим лазерным импульсом низкой длительности на аморфной углеродной пыли. Сообщается, что Q-углерод проявляет ферромагнетизм, флуоресценцию и имеет твердость, превосходящую алмазы.

Распространенность

Углерод является четвертым по распространенности химическим элементом во Вселенной по массе после водорода, гелия и кислорода. Углерод изобилует в Солнце, звездах, кометах и атмосферах большинства планет. Некоторые метеориты содержат микроскопические алмазы, которые были сформированы, когда солнечная система все еще была протопланетным диском. Микроскопические алмазы также могут образовываться при интенсивном давлении и высокой температуре в местах воздействия метеорита. В 2014 году, НАСА объявила об обновленной базе данных для отслеживания полициклических ароматических углеводородов (ПАУ) во Вселенной. Более 20% углерода во Вселенной могут быть связаны с ПАУ, комплексными соединениями углерода и водорода без кислорода . Эти соединения фигурируют в мировой гипотезе ПАУ, где они, предположительно, играют роль в абиогенезе и формировании жизни. Похоже, что ПАУ были сформированы «через пару миллиардов лет» после Большого взрыва, широко распространены во вселенной и связаны с новыми звездами и экзопланетами. По оценкам, твердая оболочка земли, в целом, содержит 730 чнм углерода, при этом 2000 чнм содержатся в сердцевине и 120 чнм – в комбинированной мантии и коре. Поскольку масса земли составляет 5,9 72 × 1024 кг, это будет означать 4360 миллионов гигатонн углерода. Это намного больше, чем количество углерода в океанах или атмосфере (ниже). В сочетании с кислородом в углекислом газе, углерод находится в атмосфере Земли (приблизительно 810 гигатонн углерода) и растворяется во всех водоемах (приблизительно 36000 гигатонн углерода). В биосфере присутствует около 1900 гигатонн углерода. Углеводороды (такие как уголь, нефть и природный газ) также содержат углерод. Угольные «резервы» (а не «ресурсы») составляют около 900 гигатонн с, возможно, 18 000 Гт ресурсов. Запасы нефти составляют около 150 гигатонн. Доказанные источники природного газа составляют около 175 1012 кубических метров (содержащих около 105 гигатонн углерода), однако в исследованиях оценивается еще 900 1012 кубических метров «нетрадиционных» месторождений, таких как сланцевый газ, что составляет около 540 гигатонн углерода. Углерод также был обнаружен в гидратах метана в полярных регионах и под морями. По разным оценкам, количество этого углерода составляет 500, 2500 Гт, или 3000 Гт . В прошлом, количество углеводородов было больше. Согласно одному источнику, в период с 1751 по 2008 годы около 347 гигатонн углерода было выброшено в атмосферу в виде углекислого газа в атмосферу от сжигания ископаемого топлива. Другой источник добавляет количество, добавленное в атмосферу в период с 1750 года до 879 Гт, а общее количество в атмосфере, море и земле (например, торфяные болота) составляет почти 2000 Гт . Углерод является составной частью (12% по массе) очень больших масс карбонатных пород (известняк, доломит, мрамор и т. д.). Уголь содержит очень большое количество углерода (антрацит содержит 92-98% углерода) и является крупнейшим коммерческим источником минерального углерода, на который приходится 4000 гигатонн или 80% ископаемого топлива. Что касается индивидуальных аллотропов углерода, графит содержится в больших количествах в Соединенных Штатах (в основном, в Нью-Йорке и Техасе), в России, Мексике, Гренландии и Индии. Природные алмазы встречаются в горном кимберлите, содержащемся в древних вулканических «шеях» или «трубах». Большинство алмазных месторождений находится в Африке, особенно в Южной Африке, Намибии, Ботсване, Республике Конго и Сьерра-Леоне. Алмазные месторождения также обнаружены в Арканзасе, Канаде, Российской Арктике, Бразилии, а также в Северной и Западной Австралии. Теперь бриллианты также извлекают со дна океана у мыса Доброй Надежды. Алмазы встречаются естественным образом, но сейчас производится около 30% всех промышленных алмазов, используемых в США. Углерод-14 образуется в верхних слоях тропосферы и стратосферы на высотах 9-15 км в реакции, которая осаждается космическими лучами. Производятся тепловые нейтроны, которые сталкиваются с ядрами азота-14, образуя углерод-14 и протон. Таким образом, 1,2 × 1010% атмосферного углекислого газа содержит углерод-14. Астероиды, богатые углеродом, относительно преобладают во внешних частях пояса астероидов в нашей солнечной системе. Эти астероиды еще не были напрямую исследованы учеными. Астероиды могут использоваться в гипотетической угледобыче на основе космического пространства, что может быть возможно в будущем, но в настоящее время технологически невозможно.

Изотопы углерода

Изотопы углерода представляют собой атомные ядра, которые содержат шесть протонов плюс ряд нейтронов (от 2 до 16). У углерода есть два устойчивых, встречающихся в природе, изотопа. Изотоп углерод-12 (12С) образует 98,93% углерода на Земле, а углерод-13 (13С) образует оставшиеся 1,07%. Концентрация 12С еще больше увеличивается в биологических материалах, потому что биохимические реакции дискриминируют 13С. В 1961 году, Международный союз чистой и прикладной химии (ИЮПАК) принял изотопный углерод-12 в качестве основы для атомных весов. Идентификация углерода в экспериментах с ядерным магнитным резонансом (ЯМР) проводится с изотопом 13С. Углерод-14 (14С) представляет собой природный радиоизотоп, созданный в верхней атмосфере (нижняя стратосфера и верхняя тропосфера) путем взаимодействия азота с космическими лучами. Он находится в следовых количествах на Земле в количестве до 1 части на триллион (0,0000000001%), в основном, в атмосфере и поверхностных отложениях, в частности, торфе и других органических материалах. Этот изотоп распадается в ходе β-эмиссии 0,158 МэВ. Из-за относительно короткого периода полураспада, 5730 лет, 14С практически отсутствует в древних скалах. В атмосфере и в живых организмах, количество 14С почти постоянное, но снижается в организмах после смерти. Этот принцип используется в радиоуглеродном датировании, изобретенном в 1949 году, которое широко использовалось для определения возраста углеродистых материалов с возрастом до 40000 лет . Существует 15 известных изотопов углерода и наименьший срок жизни из них имеет 8C, который распадается за счет эмиссии протонов и альфа-распада и имеет период полураспада 1,98739 × 10-21 с. Экзотический 19C демонстрирует ядерный ореол, что означает, что его радиус значительно больше, чем можно было бы ожидать, если бы ядро было сферой постоянной плотности.

Образование в звездах

Формирование атомного ядра углерода требует почти одновременного тройного столкновения альфа-частиц (ядер гелия) внутри ядра гигантской или сверхгигантской звезды, что известно как тройной альфа-процесс, поскольку продукты дальнейших реакций ядерного синтеза гелия с водородом или другим ядром гелия производят литий-5 и бериллий-8 соответственно, оба из которых очень неустойчивы и почти мгновенно затухают обратно в более мелкие ядра . Это происходит в условиях температур более 100 мегакальвин и концентрации гелия, что недопустимо в условиях быстрого расширения и охлаждения ранней Вселенной, и поэтому во время Большого взрыва не было создано значительных количеств углерода. Согласно современной теории физической космологии, углерод образуется внутри звезд в горизонтальной ветви путем столкновения и трансформации трех ядер гелия. Когда эти звезды умирают как сверхновая, углерод рассеивается в космос в виде пыли. Эта пыль становится составным материалом для образования звездных систем второго или третьего поколения с аккрецированными планетами. Солнечная система – одна из таких звездных систем с обилием углерода, позволяющая существование жизни, как мы ее знаем. Цикл CNO является дополнительным механизмом слияния, который управляет звездами, где углерод работает как катализатор. Ротационные переходы различных изотопических форм монооксида углерода (например, 12CO, 13CO и 18CO) обнаруживаются в субмиллиметровом диапазоне длин волн и используются при изучении новообразующихся звезд в молекулярных облаках .

Углеродный цикл

В земных условиях, конверсия одного элемента в другой – явление очень редкое. Поэтому количество углерода на Земле эффективно постоянное. Таким образом, в процессах, которые используют углерод, он должен получаться откуда-то и утилизироваться в другом месте. Пути углерода в окружающей среде образуют углеродный цикл. Например, фотосинтетические установки извлекают углекислый газ из атмосферы (или морской воды) и строят его в биомассу, как в цикле Кальвина, процессе фиксации углерода. Некоторая часть этой биомассы съедается животными, в то время как некоторая часть углерода выдыхается животными в виде двуокиси углерода. Цикл углерода значительно сложнее, чем этот короткий цикл; например, некоторое количество двуокиси углерода растворяется в океанах; если бактерии не поглощают его, мертвое растительное или животное вещество может стать нефтью или углем, которое выделяет углерод при сжигании.

Соединения углерода

Углерод может образовывать очень длинные цепи взаимосвязанных углерод-углеродных связей, свойство, которое называется образованием цепочек. Углерод-углеродные связи устойчивы. Благодаря катанации (образованию цепочек), углерод образует бесчисленное количество соединений. Оценка уникальных соединений показывает, что большее количество из них содержат углерод. Аналогичное утверждение может быть сделано для водорода, потому что большинство органических соединений также содержат водород. Простейшая форма органической молекулы представляет собой углеводород – большое семейство органических молекул, которые состоят из атомов водорода, связанных с цепочкой атомов углерода. Длина цепи, боковые цепи и функциональные группы влияют на свойства органических молекул. Углерод встречается во всех формах известной органической жизни и является основой органической химии. При объединении с водородом, углерод образует различные углеводороды, которые важны для промышленности как хладагенты, смазочные материалы, растворители, как химическое сырье для производства пластмасс и нефтепродуктов, а также как ископаемое топливо. В сочетании с кислородом и водородом, углерод может образовывать множество групп важных биологических соединений, включая сахара, лигнаны, хитины, спирты, жиры и ароматические сложные эфиры, каротиноиды и терпены. С азотом, углерод образует алкалоиды, а с добавлением серы также образует антибиотики, аминокислоты и резиновые изделия. С добавлением фосфора к этим другим элементам, он образует ДНК и РНК, носители химического кода жизни и аденозинтрифосфат (АТФ), самую важную молекулу переноса энергии во всех живых клетках.

Неорганические соединения

Обычно углеродсодержащие соединения, которые связаны с минералами или которые не содержат водорода или фтора, обрабатываются отдельно от классических органических соединений; это определение не является строгим. Среди них простые оксиды углерода. Наиболее известным оксидом является двуокись углерода (CO2). Когда-то это вещество было главной составляющей палеоатмосферы, но сегодня является второстепенным компонентом атмосферы Земли . При растворении в воде, это вещество образует углекислоту (H2CO3), но, как и большинство соединений с несколькими односвязными кислородами на одном углероде, оно неустойчиво. Однако, через это промежуточное вещество образуются резонансные стабилизированные карбонатные ионы. Некоторыми важными минералами являются карбонаты, особенно кальциты. Углерод дисульфид (CS2) аналогичен. Другим распространенным оксидом является окись углерода (СО). Она образуется при неполном сгорании и является бесцветным газом без запаха. Каждая молекула содержит тройную связь и является довольно полярной, что приводит к тому, что она постоянно связывается с молекулами гемоглобина, вытесняя кислород, который имеет более низкую аффинность связывания. Цианид (CN-) имеет сходную структуру, но ведет себя подобно ионам галогенида (псевдогалоген). Например, он может образовывать молекулу нитрида цианогена (CN) 2), аналогичную диатомовым галогенидам. Другими необычными оксидами являются субоксид углерода (C3O2), неустойчивый монооксид углерода (C2O), триоксид углерода (CO3), циклопентанпептон (C5O5), циклогексангексон (C6O6) и меллитовый ангидрид (C12O9). С реактивными металлами, такими как вольфрам, углерод образует либо карбиды (C4-), либо ацетилиды (C2-2) с образованием сплавов с высокими температурами плавления. Эти анионы также связаны с метаном и ацетиленом, оба из которых являются очень слабыми кислотами. При электроотрицательности 2,5, углерод предпочитает образовывать ковалентные связи. Несколько карбидов представляют собой ковалентные решетки, такие как карборунд (SiC), который напоминает алмаз. Тем не менее, даже самые полярные и солеобразные карбиды не являются полностью ионными соединениями .

Металлоорганические соединения

Органометаллические соединения, по определению, содержат, по меньшей мере, одну связь углерод-металл. Существует широкий спектр таких соединений; основные классы включают простые соединения алкил-металл (например, тетраэтилэлид), η2-алкеновые соединения (например, соль Zeise) и η3-аллильные соединения (например, димер хлорида аллилпалладия); металлоцены, содержащие циклопентадиенильные лиганды (например, ферроцен); и карбеновые комплексы переходных металлов. Существует много карбонилов металлов (например, тетракарбонилникель); некоторые работники считают, что лиганд монооксида углерода является чисто неорганическим, а не металлоорганическим, соединением. В то время как считается, что углерод исключительно образует четыре связи, сообщается об интересном соединении, содержащем октаэдрический гексакоординированный атом углерода. Катион этого соединения представляет собой 2+. Это явление объясняется аурофильностью золотых лигандов. В 2016 году было подтверждено, что гексаметилбензол содержит атом углерода с шестью связями, а с не обычными четырьмя.

История и этимология

Английское название углерода (carbon) происходит от латинского carbo, обозначающего «уголь» и «древесный уголь» , отсюда же и французское слово charbon, что означает «древесный уголь». На немецком, голландском и датском языках названия углерода – Kohlenstoff, koolstof и kulstof соответственно, все в буквальном смысле означают угольную субстанцию. Углерод был обнаружен в доисторических временах и был известен в формах сажи и древесного угля в самых ранних человеческих цивилизациях. Алмазы были известны, вероятно, уже в 2500 г. до н.э. в Китае, а углерод в виде древесного угля был изготовлен в римские времена путем той же химии, что и сегодня, путем нагрева древесины в пирамиде, покрытой глиной, чтобы исключить воздух. В 1722 году Рене Антуан Ферхо де Реамур продемонстрировал, что железо превращается в сталь через поглощение какого-либо вещества, которое теперь известно как углерод. В 1772 году Антуан Лавуазье показал, что алмазы являются формой углерода; когда он сжигал образцы древесного угля и алмаза и обнаружил, что ни один из них не производил никакой воды, и что оба вещества выпускали равное количество углекислого газа на грамм. В 1779 году Карл Вильгельм Шееле показал, что графит, который считался формой свинца, вместо этого был идентичен древесному углю, но с небольшой примесью железа и что он давал «воздушную кислоту» (что является диоксидом углерода) при окислении азотной кислотой. В 1786 году французские ученые Клод Луи Бертолле, Гаспард Мондж и К. А. Вандермонд подтвердили, что графит, в основном, был углеродом, при окислении его в кислороде почти так же, как Лавуазье делал с алмазом. Некоторое количество железа снова оставалось, что, по мнению французских ученых, было необходимо для структуры графита. В своей публикации они предложили название carbone (латинское слово carbonum) для элемента в графите, который выделялся как газ при сжигании графита. Затем Антуан Лавуазье перечислил углерод как элемент в своем учебнике 1789 года. Новый аллотроп углерода, фуллерен, который был обнаружен в 1985 году, включает наноструктурные формы, такие как баккиболы и нанотрубки. Их первооткрыватели – Роберт Керл, Гарольд Крото и Ричард Смолли – получили Нобелевскую премию по химии в 1996 году. Возникший в результате возобновленный интерес к новым формам приводит к открытию дополнительных экзотических аллотропов, включая стеклообразный углерод, и осознанию того, что «аморфный углерод» не является строго аморфным.

Производство

Графит

Коммерчески жизнеспособные природные отложения графита встречаются во многих частях мира, но наиболее экономически важные источники находятся в Китае, Индии, Бразилии и Северной Корее. Графитовые отложения имеют метаморфическое происхождение, обнаруженное в сочетании с кварцем, слюдой и полевыми шпатами в сланцах, гнейсах и метаморфизованных песчаниках и известняках в виде линз или жил, иногда толщиной в несколько метров или более. Запасы графита в Борроудейл, Камберленд, Англия, были вначале достаточного размера и чистоты, поэтому до 19-го века карандаши делались просто путем распиливания блоков из натурального графита на полоски перед обклеиванием полос в древесине. Сегодня меньшие отложения графита получают путем измельчения родительской породы и плавания более легкого графита на воде. Существует три типа натурального графита – аморфный, чешуйчатый или кристаллический. Аморфный графит имеет самое низкое качество и является наиболее распространенным. В отличие от науки, в промышленности «аморфный» относится к очень маленькому размеру кристалла, а не к полному отсутствию кристаллической структуры. Слово «аморфный» используется для обозначения продуктов с низким количеством графита и является самым дешевым графитом. Крупные месторождения аморфного графита находятся в Китае, Европе, Мексике и США. Плоский графит реже встречается и имеет более высокое качество, чем аморфный; он выглядит как отдельные пластины, которые кристаллизуются в метаморфических породах. Цена гранулированного графита может в четыре раза превышать цену аморфного. Чешуйчатый графит хорошего качества может быть переработан в расширяемый графит для многих применений, таких как антипирены. Первичные месторождения графита находятся в Австрии, Бразилии, Канаде, Китае, Германии и на Мадагаскаре. Жидкий или кусковой графит – самый редкий, самый ценный и высококачественный тип природного графита. Он находится в жилах вдоль интрузивных контактов в твердых кусках, и коммерчески добывается только в Шри-Ланке. Согласно USGS, мировое производство природного графита в 2010 году составило 1,1 миллиона тонн, при этом в Китае было добыто 800 000 тонн, в Индии – 130 000 т, в Бразилии – 76 000 т, в Северной Корее – 30 000 т и в Канаде – 25 000 т. Никакого природного графита не было добыто в Соединенных Штатах, но в 2009 году было добыто 118 000 т синтетического графита с оценочной стоимостью 998 млн. долл. США.

Алмаз

Поставки алмазов контролируются ограниченным числом бизнесов, а также высоко концентрируются в небольшом количестве мест по всему миру. Только очень небольшая доля алмазной руды состоит из реальных алмазов. Руда измельчается, во время чего необходимо принять меры для предотвращения разрушения крупных алмазов в этом процессе, а затем частицы сортируются по плотности. Сегодня алмазы добывают во фракции богатой алмазами с помощью рентгеновской флуоресценции, после чего последние шаги сортировки выполняются вручную. До распространения использования рентгеновских лучей, разделение проводилось с помощью смазочных лент; известно, что алмазы были обнаружены только в аллювиальных отложениях на юге Индии. Известно, что алмазы более склонны прилипать к массе, чем другие минералы в руде. Индия была лидером в производстве алмазов с момента их открытия примерно в IX веке до нашей эры до середины 18 века нашей эры, но коммерческий потенциал этих источников был исчерпан к концу 18 века, и к тому времени Индия была затомлена Бразилией, где первые алмазы были найдены в 1725 году. Алмазное производство первичных месторождений (кимберлитов и лампроитов) началось только в 1870-х годах, после открытия алмазных месторождений в Южной Африке. Производство алмазов увеличивалось с течением времени, и с этой даты было накоплено всего 4,5 млрд каратов. Около 20% от этого количества было добыто только за последние 5 лет, и в течение последних десяти лет начали производство 9 новых месторождений, и еще 4 ждут скорого открытия. Большинство из этих месторождений находятся в Канаде, Зимбабве, Анголе и одно – в России. В Соединенных Штатах, алмазы были обнаружены в Арканзасе, Колорадо и Монтане. В 2004 году поразительное открытие микроскопического алмаза в Соединенных Штатах привело к выпуску в январе 2008 года массового отбора проб кимберлитовых труб в отдаленной части Монтаны. Сегодня большинство коммерчески жизнеспособных алмазных месторождений находятся в России, Ботсване, Австралии и Демократической Республике Конго. В 2005 году, Россия произвела почти одну пятую мирового запаса алмазов, по сообщению Британской Геологической Службы. В Австралии самая богатая диамантированная труба достигла пиковых уровней производства в 42 метрических тонны (41 тонна, 46 коротких тонн) в год в 1990-х годах. Существуют также коммерческие месторождения, активные добычи которых осуществляются на Северо-Западных территориях Канады, Сибири (в основном, на территории Якутии, например, в Трубе «Мир» и в Удачной трубе), в Бразилии, а также в Северной и Западной Австралии.

Применения

Углерод необходим для всех известных живых систем. Без него невозможно существование жизни, такой, как мы ее знаем. Основное экономическое использование углерода, кроме продуктов питания и древесины, относится к углеводородам, в первую очередь, к ископаемому топливу метановому газу и сырой нефти. Сырая нефть перерабатывается нефтеперерабатывающими заводами для производства бензина, керосина и других продуктов. Целлюлоза представляет собой природный углеродсодержащий полимер, производимый растениями в виде дерева, хлопка, льна и конопли. Целлюлоза используется, в основном, для поддержания структуры растений. Коммерчески ценные углеродные полимеры животного происхождения включают шерсть, кашемир и шелк. Пластмассы изготавливают из синтетических углеродных полимеров, часто с атомами кислорода и азота, включенными через регулярные интервалы в основную полимерную цепь. Сырье для многих из этих синтетических веществ поступает из сырой нефти. Использование углерода и его соединений чрезвычайно разнообразно. Углерод может образовывать сплавы с железом, наиболее распространенным из которых является углеродистая сталь. Графит сочетается с глинами, образуя «свинец», используемый в карандашах, используемых для письма и рисования. Он также используется в качестве смазки и пигмента в качестве формовочного материала при производстве стекла, в электродах для сухих батарей и гальванизации и гальванопластики, в щетках для электродвигателей и в качестве замедлителя нейтронов в ядерных реакторах. Уголь используется как материал для изготовления произведений искусства, в качестве гриля для барбекю, для выплавки железа и имеет множество других применений. Древесина, уголь и нефть используются в качестве топлива для производства энергии и для отопления. Алмазы высокого качества используются в производстве ювелирных изделий, а промышленные алмазы используются для сверления, резки и полировки инструментов для обработки металлов и камня. Пластмассы изготавливаются из ископаемых углеводородов, а углеродное волокно, изготовленное путем пиролиза синтетических полиэфирных волокон, используется для армирования пластмасс с образованием передовых, легких композиционных материалов. Углеродное волокно изготавливается путем пиролиза экструдированных и растянутых нитей полиакрилонитрила (PAN) и других органических веществ. Кристаллическая структура и механические свойства волокна зависят от типа исходного материала и последующей обработки. Углеродные волокна, изготовленные из PAN, имеют структуру, напоминающую узкие нити графита, но термическая обработка может переупорядочить структуру в непрерывный лист. В результате, волокна имеют более высокую удельную прочность на растяжение, чем сталь. Углеродная сажа используется в качестве черного пигмента в печатных красках, масляной краске и акварелях художников, углеродной бумаге, автомобильной отделке, чернилах и лазерных принтерах. Углеродная сажа также используется в качестве наполнителя в резиновых изделиях, таких как шины и в пластмассовых соединениях. Активированный уголь используется в качестве абсорбента и адсорбента в фильтровальных материалах в таких разнообразных применениях, как противогазы, очистка воды и кухонные вытяжки, а также в медицине для поглощения токсинов, ядов или газов из пищеварительной системы. Углерод используется при химическом восстановлении при высоких температурах. Кокс используется для восстановления железной руды в железе (плавка). Затвердевание стали достигается за счет нагрева готовых стальных компонентов в углеродном порошке. Карбиды кремния, вольфрама, бора и титана входят в число самых твердых материалов и используются в качестве абразивов для резки и шлифования. Углеродные соединения составляют большую часть материалов, используемых в одежде, таких как натуральный и синтетический текстиль и кожа, а также почти все внутренние поверхности в среде, отличной от стекла, камня и металла.

Бриллианты

Алмазная промышленность подразделяется на две категории, одна из которых – алмазы высокого качества (драгоценные камни), а другая – алмазы промышленного класса. Хотя существует большая торговля обоими типами алмазов, оба рынка действуют совершенно по-разному. В отличие от драгоценных металлов, таких как золото или платина, бриллианты драгоценных камней не торгуются как товар: в продаже алмазов имеется существенная надбавка, и рынок перепродажи алмазов не очень активен. Промышленные алмазы ценятся, в основном, за их твердость и теплопроводность, при этом геммологические качества ясности и цвета, в основном, неактуальны. Около 80% добытых алмазов (равно примерно 100 млн каратов или 20 тонн в год) непригодны для использования, и используются в промышленности (алмазный лом). Синтетические алмазы, изобретенные в 1950-х годах, почти сразу нашли промышленные применения; Ежегодно производится 3 млрд каратов (600 тонн) синтетических алмазов. Доминирующим промышленным использованием алмаза является резка, сверление, шлифовка и полировка. Большинство этих применений не требуют больших алмазов; на самом деле, большинство алмазов драгоценного качества, за исключением алмазов небольшого размера, могут использоваться в промышленности. Алмазы вставляются в наконечники сверл или пильные диски или измельчаются в порошок для использования в шлифовании и полировке. Специализированные применения включают использование в лабораториях в качестве хранилища для экспериментов высокого давления, высокопроизводительных подшипников и ограниченное использование в специализированных окнах. Благодаря достижениям в области производства синтетических алмазов, новые применения становятся практически осуществимыми. Большое внимание уделяется возможному использованию алмаза в качестве полупроводника, подходящего для микрочипов, и из-за его исключительной теплопроводности в качестве радиатора в электронике.

Углерод в периодической системе элементов располагается во втором периоде в группе IVA. Электронная конфигурация атома углерода ls 2 2s 2 2p 2 . При его возбуждении легко достига­ется электронное состояние, при котором на четырех внешних атомных орбиталях находятся четыре неспаренных электрона:

Это объясняет, почему углерод в соединениях обычно четы­рехвалентен. Равенство в атоме углерода числа валентных элек­тронов числу валентных орбиталей, а также уникальное соотношение заряда ядра и радиуса атома сообщают ему способность одинаково легко присоединять и отдавать электроны в зависимо­сти от свойств партнера (разд. 9.3.1). Вследствие этого для углерода характерны различные степени окисления от -4 до +4 и легкость гибридизации его атомных орбиталей по типу sp 3 , sp 2 и sp 1 при образовании химических связей (разд. 2.1.3):

Все это дает углероду возможность образовывать ординарные, двойные и тройные связи не только между собой, но и с ато­мами других элементов-органогенов. Молекулы, образующиеся при этом, могут иметь линейное, разветвленное и циклическое строение.

Вследствие подвижности общих электронов -МО, образован­ных с участием атомов углерода, происходит их смещение в сто­рону атома более электроотрицательного элемента (индуктивный эффект), что приводит к полярности не только этой связи, но и молекулы в целом. Однако углерод, благодаря среднему значению электроотрицательности (0Э0 = 2,5), образует с атомами других элементов-органогенов слабополярные связи (табл. 12.1). При наличии в молекулах систем сопряженных связей (разд. 2.1.3) происходит делокализация подвижных электронов -МО и неподеленных электронных пар с выравниванием электронной плот­ности и длин связей в этих системах.

С позиции реакционной способности соединений большую роль играет поляризуемость связей (разд. 2.1.3). Чем больше поляризуемость связи, тем выше ее реакционная способность. Зависимость поляризуемости углеродсодержащих связей от их природы отражает следующий ряд:

Все рассмотренные данные о свойствах углеродсодержащих связей свидетельствуют о том, что углерод в соединениях образу­ет, с одной стороны, достаточно прочные ковалентные связи ме­жду собой и с другими органогенами, а с другой стороны - об­щие электронные пары этих связей достаточно лабильны. В ре­зультате этого может происходить как увеличение реакционной способности этих связей, так и стабилизация. Именно эти осо­бенности углеродсодержащих соединений и делают углерод орга­ногеном номер один.

Кислотно-основные свойства соединений углерода. Оксид углерода(4) является кислотным оксидом, а соответствующий ему гидроксид - угольная кислота Н2СО3 - слабой кислотой. Молекула оксида углерода(4) неполярна, и поэтому он плохо растворяется в воде (0,03 моль/л при 298 К). При этом вначале в ратворе образуется гидрат СО2 Н2О, в котором СО2 находится в полости ассоциата из молекул воды, а затем этот гидрат медлен­но и обратимо превращается в Н2СО3. Большая часть растворен­ного в воде оксида углерода(4) находится в виде гидрата.

В организме в эритроцитах крови под действием фермента каррбоангидразы равновесие между гидратом CO2 Н2О и Н2СО3 устанавливается очень быстро. Это позволяет пренебречь нали­чием СО2 в виде гидрата в эритроците, но не в плазме крови, где нет карбоангидразы. Образующаяся Н2СО3 диссоциирует в физиологических условиях до гидрокарбонат-аниона, а в более щелочной среде - до карбонат-аниона:

Угольная кислота существует только в растворе. Она образует два ряда солей - гидрокарбонаты (NаНСОз, Са(НС0 3)2) и карбонаты (Nа2СОз, СаСОз). В воде гидрокарбонаты растворя­ются лучше, чем карбонаты. В водных растворах соли угольной кислоты, особенно карбонаты, легко гидролизуются по аниону, создавая щелочную среду:

Такие вещества, как питьевая сода NaHC03 ; мел СаСОз, белая магнезия 4MgC03 * Mg(OH)2 * Н2О, гидролизующиеся с образонанием щелочной среды, применяются в качестве антацидных (нейтрализующих кислоты) средств для снижения повы­шенной кислотности желудочного сока:

Совокупность угольной кислоты и гидрокарбонат-иона (Н2СО3, НСО3(-)) образует гидрокарбонатную буферную систему (разд. 8.5) -славную буферную систему плазмы крови, которая обеспечива­ет постоянство рН крови на уровне рН = 7,40 ± 0,05.


Наличие в природных водах гидрокарбонатов кальция и магния обуславливает их временную жесткость. При кипяче­нии такой воды ее жесткость устраняется. Это происходит из-за гидролиза аниона HCO3(-)), термического разложения угольной кислоты и осаждения катионов кальция и магния в виде нерас­творимых соединений СаС0 3 и Mg(OH) 2:

Образование Mg(OH) 2 вызвано полным гидролизом по ка­тиону магния, протекающему в этих условиях из-за меньшей растворимости Mg(0H)2 по сравнению с MgC0 3 .

В медико-биологической практике кроме угольной кислоты приходится сталкиваться с другими углеродсодержащими кисло­тами. Это прежде всего большое множество различных органи­ческих кислот, а также синильная кислота HCN. С позиции кислотных свойств сила этих кислот различна:

Эти различия обусловлены взаимным влиянием атомов в мо­лекуле, природой диссоциирующей связи и устойчивостью аниона, т. е. его способностью к делокализации заряда.

Синильная кислота, или циановодород, HCN - бес­цветная, легколетучая жидкость (Т кип = 26 °С) с запахом горь­кого миндаля, смешивающаяся с водой в любых соотношениях. В водных растворах ведет себя как очень слабая кислота, соли которой называются цианидами. Цианиды щелочных и щелоч­ноземельных металлов растворимы в воде, при этом они гидролизуются по аниону, из-за чего их водные растворы пахнут синильной кислотой (запах горького миндаля) и имеют рН >12:


При длительном воздействии СО2, содержащегося в воздухе, цианиды разлагаются с выделением синильной кислоты:

В результате этой реакции цианид калия (цианистый калий) и его растворы при длительном хранении теряют свою токсич­ность. Цианид-анион - один из самых сильных неорганиче­ских ядов, поскольку он является активным лигандом и легко образует устойчивые комплексные соединения с ферментами, содержащими в качестве ионовкомплексообразователей Fe 3+ и Сu2(+) (разд. 10.4).

Окислительно-восстановительные свойства. Поскольку уг­лерод в соединениях может проявлять любые степени окисле­ния от -4 до +4, то в ходе реакции свободный углерод может и отдавать и присоединять электроны, выступая соответственно восстановителем или окислителем в зависимости от свойств второго реагента:


При взаимодействии сильных окислителей с органическими веществами может протекать неполное или полное окисление атомов углерода этих соединений.

В условиях анаэробного окисления при недостатке или в от­сутствие кислорода атомы углерода органического соединения в зависимости от содержания кислородных атомов в этих соедине­ниях и внешних условий могут превратиться в С0 2 , СО, С и даже СН 4 , а остальные органогены превращаются в Н2О, NH3 и H2S.

В организме полное окисление органических соединений кислородом в присутствии ферментов оксидаз (аэробное окис­ление) описывается уравнением:

Из приведенных уравнений реакций окисления видно, что в органических соединениях степень окисления изменяют только атомы углерода, а атомы остальных органогенов при этом со­храняют свою степень окисления.

При реакциях гидрирования, т. е. присоединения водорода (восстановителя) по кратной связи, образующие ее атомы углерода понижают свою степень окисления (выступают окислителями):

Органические реакции замещения с возникновением новой межуглеродной связи, например в реакции Вюрца, также явля­ются окислительно-восстановительными реакциями, в которых атомы углерода выступают окислителями, а атомы металла -восстановителями:

Подобное наблюдается в реакциях образования металлорганических соединений:


В то же время в реакциях алкилирования с возникновением новой межуглеродной связи роль окислителя и восстановителя играют атомы углерода субстрата и реагента соответственно:

В результате реакций присоединения полярного реагента к субстрату по кратной межуглеродной связи один из атомов уг­лерода понижает степень окисления, проявляя свойства окис­лителя, а другой - повышает степень окисления, выступая вос­становителем:

В этих случаях имеет место реакция внутримолекулярного окисления-восстановления атомов углерода субстрата, т. е. про­цесс дисмутации, под действием реагента, не проявляющего окислительно-восстановительных свойств.

Типичными реакциями внутримолекулярной дисмутации ор­ганических соединений за счет их атомов углерода являются ре­акции декарбоксилирования аминокислот или кетокислот, а так­же реакции перегруппировки и изомеризации органических со­единений, которые были рассмотрены в разд. 9.3. Приведенные примеры органических реакций, а также реакции из разд. 9.3 убедительно свидетельствуют, что атомы углерода в органических соединениях могут быть и окислителями, и восстановите­лями.

Атом углерода в соединении - окислитель, если в ре­зультате реакции увеличивается число его связей с атомами менее электроотрицательных элементов (во­дород, металлы), потому что, притягивая к себе общие электроны этих связей, рассматриваемый атом углеро­да понижает свою степень окисления.

Атом углерода в соединении - восстановитель, если в результате реакции увеличивается число его связей с атомами более электроотрицательных элементов (С, О, N, S), потому что, отталкивая от себя общие элек­троны этих связей, рассматриваемый атом углерода повышает свою степень окисления.

Таким образом, многие реакции в органической химии вслед­ствие окислительно-восстановительной двойственности атомов углерода являются окислительно-восстановительными. Однако, в отличие от подобных реакций неорганической химии, пере­распределение электронов между окислителем и восстановите­лем в органических соединениях может сопровождаться лишь смещением общей электронной пары химической связи к ато­му, выполняющему роль окислителя. При этом данная связь может сохраняться, но в случаях сильной ее поляризации она может и разорваться.

Комплексообразующие свойства соединений углерода. У ато­ма углерода в соединениях нет неподеленных электронных пар, и поэтому лигандами могут выступать только соединения угле­рода, содержащие кратные связи с его участием. Особенно активны в процессах комплексообразования -электроны тройной по­лярной связи оксида углерода(2) и аниона синильной кислоты.

В молекуле оксида углерода(2) атомы углерода и кислорода образуют одну и одну -связь за счет взаимного перекрывания их двух 2р-атомных орбиталей по обменному механизму. Третья связь, т. е. еще одна -связь, образуется по донорно-акцепторному механизму. Акцептором является свободная 2р-атомная ор-биталь атома углерода, а донором - атом кислорода, предостав­ляющий неподеленную пару электронов с 2p-орбитали:

Повышенная кратность связи обеспечивает этой молекуле высокую стабильность и инертность при нормальных ус­ловиях с позиции кислотно-основных (СО - несолеобразующий оксид) и окислительно-восстановительных свойств (СО - вос­становитель при Т > 1000 К). В то же время она делает его ак­тивным лигандом в реакциях комплексообразования с атомами и катионами d-металлов, прежде всего с железом, с которым он образует пентакарбонил железа - летучую ядовитую жидкость:


Способность к образованию комплексных соединений с ка­тионами d-металлов является причиной ядовитости оксида углерода(Н) для живых систем (разд. 10.4) вследствие протекания обратимых реакций с гемоглобином и оксигемоглобином, содер­жащими катион Fe 2+ , с образованием карбоксигемоглобина:

Эти равновесия смещены в сторону образования карбокси­гемоглобина ННbСО, устойчивость которого в 210 раз больше, чем оксигемоглобина ННbО2. Это приводит к накоплению карбоксигемоглобина в крови и, следовательно, к снижению ее спо­собности переносить кислород.

В анионе синильной кислоты CN- также содержатся легко поляризуемые - электроны, из-за чего он эффективно обра­зует комплексы с d-металлами, включая металлы жизни, вхо­дящие в состав ферментов. Поэтому цианиды являются высокотоксичными соединениями (разд. 10.4).

Круговорот углерода в природе. В основе круговорота угле­рода в природе в основном лежат реакции окисления и восста­новления углерода (рис. 12.3).

Из атмосферы и гидросферы растения ассимилируют (1) ок­сид углерода(4). Часть растительной массы потребляется (2) че­ловеком и животными. Дыхание животных и гниение их остан­ков (3), а также дыхание растений, гниение отмерших растений и горение древесины (4) возвращают атмосфере и гидросфере CO2. Процесс минерализации останков растений (5) и животных (6) с образованием торфа, ископаемых углей, нефти, газа при­водит к переходу углерода в природные ископаемые. В том же направлении действуют кислотно-основные реакции (7), проте­кающие между СО2 и различными горными породами с образо­ванием карбонатов (средних, кислых и основных):

Эта неорганическая часть круговорота приводит к потерям СО2 в атмосфере и гидросфере. Деятельность человека по сжи­ганию и переработке угля, нефти, газа (8), дров (4), наоборот, с избытком обогащает окружающую среду оксидом углерода(4). Долгое время существовала уверенность, что благодаря фото­синтезу концентрация СО2 в атмосфере сохраняется постоян­ной. Однако в настоящее время увеличение содержания СО2 в атмосфере за счет деятельности человека не компенсируется его естественной убылью. Общее поступление СО2 в атмосферу рас­тет в геометрической прогрессии на 4-5 % в год. Согласно рас­четам в 2000 году содержание СО2 в атмосфере достигнет приблизительно 0,04 % вместо 0,03 % (1990 г.).

После рассмотрения свойств и особенностей углеродсодержащих соединений следует еще раз подчеркнуть ведущую роль углерода

Рис. 12.3. Круговорот углерода в природе

органогена № 1: во-первых, атомы углерода формируют скелет молекул органических соединений; во-вторых, атомы углерода играют ключевую роль в окислительно-восстановительных про­цессах, поскольку среди атомов всех органогенов именно для углерода наиболее характерна окислительно-восстановительная двойственность. Подробнее о свойствах органических соедине­ний - см. модуль IV "Основы биоорганической химии".

Общая характеристика и биологическая роль р-элементов группы IVA. Электронными аналогами углерода являются эле­менты IVA группы: кремний Si, германий Ge, олово Sn и свинец Рb (см. табл. 1.2). Радиусы атомов этих элементов закономерно возрастают с увеличением порядкового номера, а их энергия иони­зации и электроотрицательность при этом закономерно снижают­ся (разд. 1.3). Поэтому первые два элемента группы: углерод и кремний - типичные неметаллы, а германий, олово, свинец -металлы, так как для них наиболее характерна отдача электро­нов. В ряду Ge - Sn - Рb металлические свойства усиливаются.

С позиции окислительно-восстановительных свойств элемен­ты С, Si, Ge, Sn и Рb в обычных условиях достаточно устойчи­вы по отношению к воздуху и воде (металлы Sn и Рb - за счет образования оксидной пленки на поверхности). В то же время соединения свинца(4) - сильные окислители:

Комплексообразующие свойства наиболее характерны для свинца, так как его катионы Рb 2+ являются сильными комплексообразователями по сравнению с катионами остальных р-элементов IVA группы. Катионы свинца образуют прочные комплексы с биолигандами.

Элементы группы IVA резко различаются как по содержанию в организме, так и по биологической роли. Углерод играет осново­полагающую роль в жизнедеятельности организма, где его содер­жание составляет около 20 %. Содержание в организме остальных элементов IVA группы находится в пределах 10 -6 -10 -3 %. В то же время, если кремний и германий, несомненно, играют важную роль в жизнедеятельности организма, то олово и особенно сви­нец - токсичны. Таким образом, с ростом атомной массы эле­ментов IVA группы токсичность их соединений возрастает.

Пыль, состоящая из частиц угля или диоксида кремния SiO2, при систематическом воздействии на легкие вызывает заболе­вания - пневмокониозы. В случае угольной пыли это антракоз -профессиональное заболевание шахтеров. При вдыхании пыли, содержащей Si02, возникает силикоз. Механизм развития пневмокониозов еще не установлен. Предполагается, что при длительном контакте силикатных песчинок с биологическими жидкостями образуется поликремниевая кислота Si02 yH2O в гелеобразном состоянии, отложение которой в клетках ведет к их гибели.

Токсическое действие свинца известно человечеству очень дав­но. Использование свинца для изготовления посуды и водопроводных труб приводило к массовому отравлению людей. В на­стоящее время свинец продолжает быть одним из основных загрязнителей окружающей среды, так как выброс соединений свинца в атмосферу составляет свыше 400 000 т ежегодно. Сви­нец накапливается в основном в скелете в форме малораствори­мого фосфата РЬз(Р04)2, а при деминерализации костей оказы­вает регулярное токсическое действие на организм. Поэтому свинец относится к кумулятивным ядам. Токсичность соедине­ний свинца связана прежде всего с его комплексообразующими свойствами и большим сродством к биолигандам, особенно содержащим сульфгидрильные группы (-SH):

Образование комплексных соединений ионов свинца с бел­ками, фосфолипидами и нуклеотидами приводит к их денату­рации. Часто ионы свинца ингибируют металлоферменты ЕМ 2+ , вытесняя из них катионы металлов жизни:

Свинец и его соединения относятся к ядам, действующим преимущественно на нервную систему, кровеносные сосуды и кровь. При этом соединения свинца влияют на синтез белка, энергетический баланс клеток и их генетический аппарат.

В медицине применяются как вяжущие наружные антисеп­тические средства: свинец ацетат Рb(СНзСОО)2 ЗН2О (свинцо­вые примочки) и свинец(2) оксид РbО (свинцовый пластырь). Ионы свинца этих соединений вступают в реакции с белками (альбуминами) цитоплазмы микробных клеток и тканей, образуя гелеобразные альбуминаты. Образование гелей убивает микробы и, кроме того, затрудняет проникновение их внутрь клеток тка­ней, что снижает местную воспалительную реакцию.


(первый электрон)

Углерод (химический символ C) химический элемент 4-ой группы главной подгруппы 2-го периода периодической системы Менделеева , порядковый номер 6, атомная масса природной смеси изотопов 12,0107 г/моль.

История

Углерод в виде древесного угля применялся в глубокой древности для выплавки металлов. Издавна известны аллотропные модификации углерода— алмаз и графит. Элементарная природа углерода установлена А. Лавуазье в конце 1780-х годов.

Происхождение названия

Международное название: carbō — уголь.

Физические свойства

Углерод существует во множестве аллотропных модификаций с очень разнообразными физическими свойствами. Разнообразие модификаций обусловлено способностью углерода образовывать химические связи разного типа.

Изотопы углерода

Природный углерод состоит из двух стабильных изотопов— 12 С (98,892%) и 13 С (1,108%) и одного радиоактивного изотопа 14 С (β-излучатель, Т ½ = 5730 лет), сосредоточенного в атмосфере и верхней части земной коры. Он постоянно образуется в нижних слоях стратосферы в результате воздействия нейтронов космического излучения на ядра азота по реакции: 14 N (n, p) 14 C, а также, с середины 1950-х годов, как техногенный продукт работы АЭС и в результате испытания водородных бомб.

На образовании и распаде 14 С основан метод радиоуглеродного датирования, широко применяющийся в четвертичной геологии и археологии.

Аллотропные модификации углерода

Схемы строения различных модификаций углерода
a : алмаз, b : графит, c : лонсдейлит
d : фуллерен— букибол C 60 , e : фуллерен C 540 , f : фуллерен C 70
g : аморфный углерод, h : углеродная нанотрубка

Аллотропия углерода

лонсдейлит

фуллерены

углеродные нанотрубки

аморфный углерод

Уголь техуглерод сажа

Электронные орбитали атома углерода могут иметь различную геометрию, в зависимости от степени гибридизации его электронных орбиталей. Существует три основных геометрии атома углерода.

Тетраэдрическая — образуется при смешении одного s- и трех p-электронов (sp 3 -гибридизация). Атом углерода находится в центре тетраэдра, связан четырьмя эквивалентными σ-связями с атомами углерода или иными в вершинах тетраэдра. Такой геометрии атома углерода соответствуют аллотропные модификации углерода алмаз и лонсдейлит. Такой гибридизацией обладает углерод, например, в метане и других углеводородах.

Тригональная - образуется при смешении одной s- и двух p-электронных орбиталей (sp²-гибридизация). Атом углерода имеет три равноценные σ-связи, расположенные в одной плоскости под углом 120° друг к другу. Не участвующая в гибридизации p-орбиталь, расположенная перпендикулярно плоскости σ-связей, используется для образования π-связи с другими атомами. Такая геометрия углерода характерна для графита, фенола и др.

Дигональная — образуется при смешении одного s- и одного p-электронов (sp-гибридизация). При этом два электронных облака вытянуты вдоль одного направления и имеют вид несимметричных гантелей. Два других р-электрона дают π-связи. Углерод с такой геометрией атома образует особую аллотропную модификацию — карбин.

Графит и алмаз

Основные и хорошо изученные кристаллические модификации углерода— алмаз и графит. При нормальных условиях термодинамически устойчив только графит, а алмаз и другие формы метастабильны. При атмосферном давлении и температуре выше 1200 Kалмаз начинает переходить в графит, выше 2100 Kпревращение совершается за секунды. ΔН 0 перехода— 1,898 кДж/моль. При нормальном давлении углерод сублимируется при 3780 K. Жидкий углерод существует только при определенном внешнем давлении. Тройные точки: графит-жидкость-пар Т =4130 K, р =10,7 МПа. Прямой переход графита в алмаз происходит при 3000 Kи давлении 11—12 ГПа.

При давлении свыше 60 ГПа предполагают образование весьма плотной модификации С III (плотность на 15—20% выше плотности алмаза), имеющей металлическую проводимость. При высоких давлениях и относительно низких температурах (ок. 1200 K) из высокоориентированного графита образуется гексагональная модификация углерода с кристаллической решеткой типа вюрцита— лонсдейлит (а =0,252 нм, с =0,412 нм, пространственная группа Р6 3 /ттс), плотность 3,51 г/см³, то есть такая же, как у алмаза. Лонсдейлит найден также в метеоритах.

Ультрадисперсные алмазы (наноалмазы)

В 1980-е гг. в СССР было обнаружено, что в условиях динамического нагружения углеродсодержащих материалов могут образовываться алмазоподобные структуры, получившие название ультрадисперсных алмазов (УДА). В настоящее время всё чаще применяется термин «наноалмазы». Размер частиц в таких матералах составляет единицы нанометров. Условия образования УДА могут быть реализованы при детонации взрывчатых веществ с значительным отрицательным кислородным балансом, например смесей тротила с гексогеном. Такие условия могут быть реализованы также при ударах небесных тел о поверхность Земли в присутствии углеродсодержащих материалов (органика, торф, уголь и пр.). Так, в зоне падения Тунгусского метеорита в лесной подстилке были обнаружены УДА.

Карбин

Кристаллическая модификация углерода гексагональной сингонии с цепочечным строением молекул называется карбин. Цепи имеют либо полиеновое строение (—C≡C—), либо поликумуленовое (=C=C=). Известно несколько форм карбина, отличающихся числом атомов в элементарной ячейке, размерами ячеек и плотностью (2,68—3,30 г/см³). Карбин встречается в природе в виде минерала чаоита (белые прожилки и вкрапления в графите) и получен искусственно— окислительной дегидрополиконденсацией ацетилена, действием лазерного излучения на графит, из углеводородов или CCl 4 в низкотемпературной плазме.

Карбин представляет собой мелкокристаллический порошок чёрного цвета (плотность 1,9-2 г/см³), обладает полупроводниковыми свойствами. Получен в искусственных условиях из длинных цепочек атомов углерода , уложенных параллельно друг другу.

Карбин— линейный полимер углерода. В молекуле карбина атомы углерода соединены в цепочки поочередно либо тройными и одинарными связями (полиеновое строение), либо постоянно двойными связями (поликумуленовое строение). Это вещество впервые получено советскими химиками В.В.Коршаком, А.М.Сладковым, В.И.Касаточкиным и Ю.П.Кудрявцевым в начале 60-х гг. в Институте элементоорганических соединений Академии наук СССР .Карбин обладает полупроводниковыми свойствами, причём под воздействием света его проводимость сильно увеличивается. На этом свойстве основано первое практическое применение— в фотоэлементах.

Фуллерены и углеродные нанотрубки

Углерод известен также в виде кластерных частиц С 60 , С 70 , C 80 , C 90 , C 100 и подобных (фуллерены), а также графенов и нанотрубок.

Аморфный углерод

В основе строения аморфного углерода лежит разупорядоченная структура монокристаллического (всегда содержит примеси) графита. Это кокс, бурые и каменные угли, техуглерод, сажа, активный уголь.

Нахождение в природе

Содержание углерода в земной коре 0,1% по массе. Свободный углерод находится в природе в виде алмаза и графита. Основная масса углерода в виде природных карбонатов (известняки и доломиты), горючих ископаемых— антрацит (94—97% С), бурые угли (64—80% С), каменные угли (76—95% С), горючие сланцы (56—78% С), нефть (82—87% С), горючих природных газов (до 99% метана), торф (53—56% С), а также битумы и др. В атмосфере и гидросфере находится в виде диоксида углерода СО 2 , в воздухе 0,046% СО 2 по массе, в водах рек, морей и океанов в ~60 раз больше. Углерод входит в состав растений и животных (~18%).
В организм человека углерод поступает с пищей (в норме около 300 г в сутки). Общее содержание углерода в организме человека достигает около 21% (15кг на 70кг массы тела). Углерод составляет 2/3 массы мышц и 1/3 массы костной ткани. Выводится из организма преимущественно с выдыхаемым воздухом (углекислый газ) и мочой (мочевина)
Кругооборот углерода в природе включает биологический цикл, выделение СО 2 в атмосферу при сгорании ископаемого топлива, из вулканических газов, горячих минеральных источников, из поверхностных слоев океанических вод и др. Биологический цикл состоит в том, что углерод в виде СО 2 поглощается из тропосферы растениями. Затем из биосферы вновь возвращается в геосферу: с растениями углерод попадает в организм животных и человека, а затем при гниении животных и растительных материалов— в почву и в виде СО 2 — в атмосферу.

В парообразном состоянии и в виде соединений с азотом и водородом углерод обнаружен в атмосфере Солнца, планет, он найден в каменных и железных метеоритах.

Большинство соединений углерода, и прежде всего углеводороды, обладают ярко выраженным характером ковалентных соединений. Прочность простых, двойных и тройных связей атомов С между собой, способность образовывать устойчивые цепи и циклы из атомов С обусловливают существования огромного числа углеродсодержащих соединений, изучаемых органической химией.

Химические свойства

При обычных температурах углерод химически инертен, при достаточно высоких соединяется со многими элементами, проявляет сильные восстановительные свойства. Химическая активность разных форм углерода убывает в ряду: аморфный углерод, графит, алмаз, на воздухе они воспламеняются при температурах соответственно выше 300—500 °C, 600—700 °C и 850—1000 °C.

Степени окисления +4, −4, редко +2 (СО, карбиды металлов), +3 (C 2 N 2 , галогенцианы); сродство к электрону 1,27 эВ; энергия ионизации при последовательном переходе от С 0 к С 4+ соответственно 11,2604, 24,383, 47,871 и 64,19 эВ.

Неорганические соединения

Углерод реагирует со многими элементами с образованием карбидов.

Продукты горения— оксид углерода CO и диоксид углерода СО 2 . Известен также неустойчивый оксид С 3 О 2 (температура плавления −111°C, температура кипения 7°C) и некоторые другие оксиды. Графит и аморфный углерод начинают реагировать с Н 2 при 1200°C, с F 2 — соответственно 900°C.

CO 2 с водой образует слабую угольную кислоту— H 2 CO 3 , которая образует соли— Карбонаты. На Земле наиболее широко распространены карбонаты кальция (мел, мрамор, кальцит, известняк и др. минералы) и магния (доломит).

Графит с галогенами, щелочными металлами и др. веществами образует соединения включения. При пропускании электрического разряда между угольными электродами в среде N 2 образуется циан, при высоких температурах взаимодействием углерода со смесью Н 2 и N 2 получают синильную кислоту. С серой углерод дает сероуглерод CS 2 , известны также CS и C 3 S 2 . С большинством металлов, бором и кремнием углерод образует карбиды. Важна в промышленности реакция углерода с водяным паром: С +Н 2 О =СО +Н 2 (Газификация твердых топлив). При нагревании углерод восстанавливает оксиды металлов до металлов, что широко используется в металлургии.

Органические соединения

Благодаря способности углерода образовывать полимерные цепочки, существует огромный класс соединений на основе углерода, которых значительно больше, чем неорганических, и изучением которых занимается органическая химия. Среди них наиболее обширные группы: углеводороды, белки, жиры и др.

Соединения углерода составляют основу земной жизни, а их свойства во многом определяют спектр условий, в которых подобные формы жизни могут существовать. По числу атомов в живых клетках доля углерода около 25%, по массовой доле— около 18%.

Применение

Графит используется в карандашной промышленности. Также его используют в качестве смазки при особо высоких или низких температурах.

Алмаз, благодаря исключительной твердости, незаменимый абразивный материал. Алмазным напылением обладают шлифовальные насадки бормашин. Кроме этого, ограненные алмазы — бриллианты используются в качестве драгоценных камней в ювелирных украшениях. Благодаря редкости, высоким декоративным качествам и стечению исторических обстоятельств, бриллиант неизменно является самым дорогим драгоценным камнем. Исключительно высокая теплопроводность алмаза (до 2000 Вт/м.К) делает его перспективным материалом для полупроводниковой техники в качестве подложек для процессоров. Но относительно высокая цена (около 50 долларов/грамм) и сложность обработки алмаза ограничивают его применение в этой области.
В фармакологии и медицине широко используются различные соединения углерода— производные угольной кислоты и карбоновых кислот, различные гетероциклы, полимеры и другие соединения. Так, карболен (активированный уголь), применяется для абсорбции и выведения из организма различных токсинов; графит (в виде мазей)— для лечения кожных заболеваний; радиоактивные изотопы углерода— для научных исследований (радиоуглеродный анализ).

Углерод играет огромную роль в жизни человека. Его применения столь же разнообразны, как сам этот многоликий элемент.

Углерод является основой всех органических веществ. Любой живой организм состоит в значительной степени из углерода. Углерод— основа жизни. Источником углерода для живых организмов обычно является СО 2 из атмосферы или воды. В результате фотосинтеза он попадает в биологические пищевые цепи, в которых живые существа пожирают друг друга или останки друг друга и тем самым добывают углерод для строительства собственного тела. Биологический цикл углерода заканчивается либо окислением и возврашением в атмосферу, либо захоронением в виде угля или нефти.

Углерод в виде ископаемого топлива: угля и углеводородов (нефть, природный газ)— один из важнейших источников энергии для человечества.

Токсическое действие

Углерод входит в состав атмосферных аэрозолей, в результате чего может изменяться региональный климат, уменьшаться количество солнечных дней. Углерод поступает в окружающую среду в виде сажив составе выхлопных газов автотранспорта, при сжигании угля на ТЭС, при открытых разработках угля, подземной его газификации, получении угольных концентратов и др. Концентрация углерода над источниками горения 100—400 мкг/м³, крупными городами 2,4—15,9 мкг/м³, сельскими районами 0,5— 0,8 мкг/м³. С газоаэрозольными выбросами АЭС в атмосферу поступает (6—15).10 9 Бк/сут 14 СО 2 .

Высокое содержание углерода в атмосферных аэрозолях ведет к повышению заболеваемости населения, особенно верхних дыхательных путей и легких. Профессиональные заболевания— в основном антракоз и пылевой бронхит. В воздухе рабочей зоны ПДК, мг/м³: алмаз 8,0, антрацит и кокс 6,0, каменный уголь 10,0, технический углерод и углеродная пыль 4,0; в атмосферном воздухе максимальная разовая 0,15, среднесуточная 0,05 мг/м³.

Токсическое действие 14 С, вошедшего в состав молекул белков (особенно в ДНК и РНК), определяется радиационным воздействием бета частиц и ядер отдачи азота (14 С (β) → 14 N) и трансмутационным эффектом— изменением химического состава молекулы в результате превращения атома С в атом N. Допустимая концентрация 14 С в воздухе рабочей зоны ДК А 1,3 Бк/л, в атмосферном воздухе ДК Б 4,4 Бк/л, в воде 3,0.10 4 Бк/л, предельно допустимое поступление через органы дыхания 3,2.10 8 Бк/год.

Дополнительная информация

— Соединения углерода
— Радиоуглеродный анализ
— Ортокарбоновая кислота

Аллотропные формы углерода:

Алмаз
Графен
Графит
Карбин
Лонсдейлит
Углеродные нанотрубки
Фуллерены

Аморфные формы:

Сажа
Технический углерод
Уголь

Изотопы углерода:

Нестабильные (менее суток): 8C: Углерод-8, 9C: Углерод-9, 10C: Углерод-10, 11C: Углерод-11
Стабильные: 12C: Углерод-12, 13C: Углерод-13
10—10 000 лет: 14C: Углерод-14
Нестабильные (менее суток): 15C: Углерод-15, 16C: Углерод-16, 17C: Углерод-17, 18C: Углерод-18, 19C: Углерод-19, 20C: Углерод-20, 21C: Углерод-21, 22C: Углерод-22

Таблица нуклидов

Углерод, Carboneum, С (6)
Углерод (англ. Carbon, франц. Carbone, нем. Kohlenstoff) в виде угля, копоти и сажи известен человечеству с незапамятных времен; около 100 тыс. лет назад, когда наши предки овладели огнем, они каждодневно имели дело с углем и сажей. Вероятно, очень рано люди познакомились и с аллотропическими видоизменениями углерода — алмазом и графитом, а также с ископаемым каменным углем. Не удивительно, что горение углеродсодержащих веществ было одним из первых химических процессов, заинтересовавших человека. Так как горящее вещество исчезало, пожираемое огнем, горение рассматривали как процесс разложения вещества, и поэтому уголь (или углерод) не считали элементом. Элементом был огонь — явление, сопровождающее горение; в учениях об элементах древности огонь обычно фигурирует в качестве одного из элементов. На рубеже XVII -- XVIII вв. возникла теория флогистона, выдвинутая Бехером и Шталем. Эта теория признавала наличие в каждом горючем теле особого элементарного вещества — невесомого флюида — флогистона, улетучивающегося в процессе горения.

При сгорании большого количества угля остается лишь немного золы, флогистики полагали, что уголь — это почти чистый флогистон. Именно этим объясняли, в частности, «флогистирующее» действие угля, — его способность восстанавливать металлы из «известей» и руд. Позднейшие флогистики, Реомюр, Бергман и др., уже начали понимать, что уголь представляет собой элементарное вещество. Однако впервые таковым «чистый уголь» был признан Лавуазье, исследовавшим процесс сжигания в воздухе и кислороде угля и других веществ. В книге Гитона де Морво, Лавуазье, Бертолле и Фуркруа «Метод химической номенклатуры» (1787) появилось название «углерода» (carbone) вместо французского «чистый уголь» (charbone pur). Под этим же названием углерод фигурирует в «Таблице простых тел» в «Элементарном учебнике химии» Лавуазье. В 1791 г. английский химик Теннант первым получил свободный углерод; он пропускал пары фосфора над прокаленным мелом, в результате чего образовывался фосфат кальция и углерод. То, что алмаз при сильном нагревании сгорает без остатка, было известно давно. Еще в 1751 г. французский король Франц I согласился дать алмаз и рубин для опытов по сжиганию, после чего эти опыты даже вошли в моду. Оказалось, что сгорает лишь алмаз, а рубин (окись алюминия с примесью хрома) выдерживает без повреждения длительное нагревание в фокусе зажигательной линзы. Лавуазье поставил новый опыт по сжиганию алмаза с помощью большой зажигательной машины, пришел к выводу, что алмаз представляет собой кристаллический углерод. Второй аллотроп углерода — графит в алхимическом периоде считался видоизмененным свинцовым блеском и назывался plumbago; только в 1740 г. Потт обнаружил отсутствие в графите какой-либо примеси свинца. Шееле исследовал графит (1779) и будучи флогистиком счел его сернистым телом особого рода, особым минеральным углем, содержащим связанную «воздушную кислоту» (СО2,) и большое количество флогистона.

Двадцать лет спустя Гитон де Морво путем осторожного нагревания превратил алмаз в графит, а затем в угольную кислоту.

Международное название Carboneum происходит от лат. carbo (уголь). Слово это очень древнего происхождения. Его сопоставляют с cremare — гореть; корень саг, cal, русское гар, гал, гол, санскритское ста означает кипятить, варить. Со словом «carbo» связаны названия углерода и на других европейских языках (carbon, charbone и др.). Немецкое Kohlenstoff происходит от Kohle — уголь (старогерманское kolo, шведское kylla -- нагревать). Древнерусское угорати, или угарати (обжигать, опалять) имеет корень гар, или гор, с возможным переходом в гол; уголь по-древнерусски югъль, или угъль, того же происхождения. Слово алмаз (Diamante) происходит от древнегреческого — несокрушимый, непреклонный, твердый, а графит от греческого — пишу.

В начале XIX в. старое слово уголь в русской химической литературе иногда заменялось словом «углетвор» (Шерер, 1807; Севергин, 1815); с 1824 г. Соловьев ввел название углерод.