Теория:

При решении неравенств используют следующие правила:

1. Любой член неравенства можно перенести из одной части
неравенства в другую с противоположным знаком, при этом знак неравенства не меняется.

2. Обе части неравенства можно умножить или разделить на одно
и то же положительное число, не изменив при этом знак неравенства.

3. Обе части неравенства можно умножить или разделить на одно
и то же отрицательное число, изменив при этом знак неравенства на
противоположный.

Решить неравенство − 8 x + 11 < − 3 x − 4
Решение.

1. Перенесём член − 3 x в левую часть неравенства, а член 11 — в правую часть неравенства, при этом поменяем знаки на противоположные у − 3 x и у 11 .
Тогда получим

− 8 x + 3 x < − 4 − 11

− 5 x < − 15

2. Разделим обе части неравенства − 5 x < − 15 на отрицательное число − 5 , при этом знак неравенства < , поменяется на > , т.е. мы перейдём к неравенству противоположного смысла.
Получим:

− 5 x < − 15 | : (− 5 )

x > − 15 : (− 5 )

x > 3

x > 3 — решение заданного неравенства.

Обрати внимание!

Для записи решения можно использовать два варианта: x > 3 или в виде числового промежутка.

Отметим множество решений неравенства на числовой прямой и запишем ответ в виде числового промежутка.

x ∈ (3 ; + ∞ )

Ответ: x > 3 или x ∈ (3 ; + ∞ )

Алгебраические неравенства.

Квадратные неравенства. Рациональные неравенства высших степеней.

Методы решения неравенств зависят в основном от того, к какому классу относятся функции, составляющие неравенство.

  1. I . Квадратные неравенства , то есть неравенства вида

ax 2 + bx + c > 0 (< 0), a ≠ 0.

Чтобы решить неравенство можно:

  1. Квадратный трехчлен разложить на множители, то есть неравенство записать в виде

a (x - x 1) (x - x 2) > 0 (< 0).

  1. Корни многочлена нанести на числовую ось. Корни разбивают множество действительных чисел на промежутки, в каждом из которых соответствующая квадратичная функция будет знакопостоянной.
  2. Определить знак a (x - x 1) (x - x 2) в каждом промежутке и записать ответ.

Если квадратный трехчлен не имеет корней, то при D<0 и a>0 квадратный трехчлен при любом x положителен.

  • Решить неравенство. x 2 + x - 6 > 0.

Разложим квадратный трехчлен на множители (x + 3) (x - 2) > 0

Ответ: x (-∞; -3) (2; +∞).

2) (x - 6) 2 > 0

Это неравенство верно при любом х, кроме х = 6.

Ответ: (-∞; 6) (6; +∞).

3) x² + 4x + 15 < 0.

Здесь D < 0, a = 1 > 0. Квадратный трехчлен положителен при всех х.

Ответ: x Î Ø.

Решить неравенства:

  1. 1 + х - 2х² < 0. Ответ:
  2. 3х² - 12х + 12 ≤ 0. Ответ:
  3. 3х² - 7х + 5 ≤ 0. Ответ:
  4. 2х² - 12х + 18 > 0. Ответ:
  5. При каких значениях a неравенство

x² - ax > выполняется для любых х? Ответ:

  1. II . Рациональные неравенства высших степеней, то есть неравенства вида

a n x n + a n-1 x n-1 + … + a 1 x + a 0 > 0 (<0), n>2.

Многочлен высшей степени следует разложить на множители, то есть неравенство записать в виде

a n (x - x 1) (x - x 2) ·…· (x - x n) > 0 (<0).

Отметить на числовой оси точки, в которых многочлен обращается в нуль.

Определить знаки многочлена на каждом промежутке.

1) Решить неравенство x 4 - 6x 3 + 11x 2 - 6x < 0.

x 4 - 6x 3 + 11x 2 - 6x = x (x 3 - 6x 2 + 11x -6) = x (x 3 - x 2 - 5x 2 + 5x +6x - 6) =x (x - 1)(x 2 -5x + 6) =

x (x - 1) (x - 2) (x - 3). Итак, x (x - 1) (x - 2) (x - 3)<0

Ответ: (0; 1) (2; 3).

2) Решить неравенство (x -1) 5 (x + 2) (x - ½) 7 (2x + 1) 4 <0.

Отметим на числовой оси точки, в которых многочлен обращается в нуль. Это х = 1, х = -2, х = ½, х = - ½.

В точке х = - ½ смены знака не происходит, потому что двучлен (2х + 1) возводится в четную степень, то есть выражение (2x + 1) 4 не меняет знак при переходе через точку х = - ½.

Ответ: (-∞; -2) (½; 1).

3) Решить неравенство: х 2 (х + 2) (х - 3) ≥ 0.

Данное неравенство равносильно следующей совокупности

Решением (1) является х (-∞; -2) (3; +∞). Решением (2) являются х = 0, х = -2, х = 3. Объединяя полученные решения, получаем х Î (-∞; -2] {0} {0}

Пример 1. Верны ли неравенства 5 0, 0 0?

Неравенство 5 0 - это сложное высказывание состоящее из двух простых высказываний связанных логической связкой "или" (дизъюнкция). Либо 5 > 0 либо 5 = 0. Первое высказывание 5 > 0 - истинно, второе высказывание 5 = 0 - ложно. По определению дизъюнкции такое сложное высказывание истинно.

Аналогично обсуждается запись 00.

Неравенства вида а > b, а < b будем называть строгими, а неравенства вида ab, ab - нестрогими.

Неравенства а > b и с > d (или а < b и с < d ) будем называть неравенствами одинакового смысла, а неравенства а > b и c < d - неравенствами противоположного смысла. Отметим, что эти два термина (неравенства одинакового и противоположного смысла) относятся лишь к форме записи неравенств, а не к самим фактам, выражаемым этими неравенствами. Так, по отношению к неравенству а < b неравенство с < d является неравенством того же смысла, а в записи d > c (означающей то же самое) - неравенством противоположного смысла.

Наряду с неравенствами вида a > b , ab употребляются так называемые двойные неравенства, т. е. неравенства вида а < с < b , ас < b , a < cb ,
a
cb . По определению запись

а < с < b (1)
означает, что имеют место оба неравенства:

а < с и с < b.

Аналогичный смысл имеют неравенства асb, ас < b, а < сb.

Двойное неравенство (1) можно записать так:

(a < c < b) [(a < c) & (c < b)]

а двойное неравенство a ≤ c ≤ b можно записать в следующем виде:

(a c b) [(a < c)V(a = c) & (c < b)V(c = b)]

Перейдем теперь к изложению основных свойств и правил действий над неравенствами, договорившись, что в данной статье буквы a, b, с обозначают действительные числа, а n означает натуральное число.

1) Если а > b и b > с, то a > с (транзитивность).

Д о к а з а т е л ь с т в о.

Так как по условию а > b и b > c , то числа а - b и b - с положительны, и, следовательно, число а - с = (а - b) + (b - с) , как сумма положительных чисел, также является положительным. Это означает, по определению, что а > с .

2) Если а > b, то при любом с имеет место неравенство а + с > b + c.

Д о к а з а т е л ь с т в о.

Так как а > b , то число а - b положительно. Следовательно, число (а + с) - (b + с) = a + c - b - c = а - b также является положительным, т. е.
a + с > b + с.

3) Если a + b > c, то a > b - c , т. е. любое слагаемое можно перенести из одной части неравенства в другую, изменив знак этого слагаемого на противоположный.

Доказательство вытекает из свойства 2) достаточно к обеим частям неравенства а + b > с прибавить число - b.

4) Если а > b и с > d, то а + с > b + d, т. е. при сложении двух неравенств одного и того же смысла получается неравенство того же смысла.

Д о к а з а т е л ь с т в о.

В силу определения неравенства достаточно показать, что разность
(а + с} - (b + c) положительна. Эту разность можно записать следующим образом:
(a + c) - (b + d) = {а - b) + (с - d) .
Так как по условию числа а - b и с - d положительны, то (a + с) - (b + d) также есть число положительное.

Следствие. Из правил 2) и 4) вытекает следующее Правило вычитания неравенств: если а > b, с > d , то a - d > b - с (для доказательства достаточно к обеим частям неравенства а + с > b + d прибавить число - c - d ).

5) Если а > b, то при с > 0 имеем ас > bc, а при с < 0 имеем ас < bc.

Иначе говоря, при умножении обеих частей неравенства ни положительное число знак неравенства сохраняется (т. е. получается неравенство, того же смысла), а при умножении на отрицательное число знак неравенства меняется на противоположный (т. е. получается неравенство противоположного смысла.

Д о к а з а т е л ь с т в о.

Если а > b , то а - b есть число положительное. Следовательно, знак разности ас-bс = с(а - b) совпадает со знаком числа с : если с - положительное число, то и разность ас - bc положительна и потому ас > bс , а если с < 0 , то эта разность отрицательна и потому bc - ас положительно, т. е. bc > ас .

6) Если а > b > 0 и с > d > 0, то ас > bd, т. е. если все члены двух неравенств одинакового смысла положительны, то при почленном умножении этих неравенств получается неравенство того же смысла.

Д о к а з а т е л ь с т в о.

Имеем ас - bd = ac - bc + bc - bd = c(a - b) + b{c - d) . Так как с > 0, b > 0, a - b > 0, с - d > 0, то ас - bd > 0, т. е. ас > bd.

Замечание. Из доказательства видно, что условие d > 0 в формулировке свойства 6) несущественно: для справедливости этого свойства достаточно, чтобы были выполнены условия a > b > 0, с > d, с > 0 . Если же (при выполнении неравенств a > b, с > d ) числа а, b, с не будут все положительными, то неравенство ас > bd может не выполняться. Например, при а = 2, b =1, c = -2, d = -3 имеем a > b, с > d , но неравенство ас > bd (т. е. -4 > -3) не выполнено. Таким образом, требование положительности чисел а, b, с в формулировке свойства 6) существенно.

7) Если a ≥ b > 0 и c > d > 0, то(деление неравенств).

Д о к а з а т е л ь с т в о.

ИмеемЧислитель дроби, стоящей в правой части, положителен (см. свойства 5), 6)), знаменатель также положителен. Следовательно,. Этим свойство 7) доказано.

Замечание. Отметим важный частный случай правила 7), получающийся при а = b = 1: если с > d > 0, то. Таким образом, если члены неравенства положительны, то при переходе к обратным величинам получаем неравенство противоположного смысла. Предлагаем читателям проверить, что это правило сохраняется и в7) Если ab > 0 и c > d > 0, то(деление неравенств).

Д о к а з а т е л ь с т в о. то.

Мы доказали выше несколько свойств неравенств, записанных с помощью знака > (больше). Однако все эти свойства можно было бы формулировать с помощью знака < (меньше), так как неравенство b < а означает, по определению, то же самое, что и неравенство а > b . Кроме того, как это нетрудно проверить, доказанные выше свойства сохраняются и для нестрогих неравенств. Например, свойство 1) для нестрогих неравенств будет иметь следующий вид: если аb и bс , то ас .

Разумеется, сказанным выше не ограничиваются общие свойства неравенств. Существует еще целый ряд неравенств общего вида, связанных с рассмотрением степенной, показательной, логарифмической и тригонометрических функций. Общий подход для написания такого рода неравенств заключается в следующем. Если некоторая функция у = f(х) монотонно возрастает на отрезке [а, b] , то при x 1 > x 2 (где x 1 и x 2 принадлежат этому отрезку) мы имеем f(x 1) > f(x 2). Аналогично, если функция y = f{x) монотонно убывает на отрезке [а, b] , то при х 1 > х 2 (где х 1 и х 2 принадлежат этому отрезку) мы имеем f(x 1) < f(x 2 ). Разумеется, сказанное не отличается от определения монотонности, но для запоминания и написания неравенств этот прием очень удобен.

Так, например, для любого натурального n функция у = х n является монотонно возрастающей на луче }