Ганглии или базальные ядра головного мозга, располагаются сразу под корой полушарий и оказывают влияние на двигательные функции организма. Нарушение работы отражается на латеральной системе и как следствие, на мышечном тонусе и анатомическом положении мускулатуры.

Что такое базальные ганглии мозга

Базальные подкорковые ядра головного мозга - это массивные анатомические структуры, расположенные в белом веществе полушарий.

К ганглиям относятся четыре различных образования:

  1. Хвостатое ядро.
  2. Ограда.
  3. Чечевицеобразное ядро.
  4. Миндалевидное тело.
Все базальные структуры имеют оболочки или прослойки, состоящие из белого вещества, отделяющие их друг от друга.

Хвостатое и чечевицеобразное ядро вместе составляют отдельное анатомическое образование, называемое полосатое тело, по латыни corpus striatum .

Основным функциональным назначением базальных ядер головного мозга является торможение или усиление передачи импульсных сигналов от таламуса к участкам коры, отвечающей за моторику и оказывающим влияние на двигательные способности организма.

Где расположены базальные ядра

Ганглии – это часть подкорковых нейронных узлов полушарий головного мозга, расположенных в белом веществе передней доли. Анатомическое расположение базальных ганглий приходится на границу между лобными долями и стволом мозга. Такое расположение облегчает регуляцию двигательных и вегетативных возможностей организма. Функцией базальных ядер является участие в интегративных процессах центральной нервной системы.

Первым симптомом, на который стоит обратить внимание, является мелкая дрожь и непроизвольные движения в руках. Интенсивность проявлений нарастает во время усталости.


За что отвечают базальные ганглии

Базальная часть мозга отвечает за несколько важных функций, напрямую влияющих на самочувствие пациента и регуляцию ЦНС. Три больших подкорковых ядра образуют экстрапирамидальную систему, главной задачей которой является контроль над двигательными функциями и моторикой тела.

Базальные ядра конечного мозга, составляющие, стриопаллидарную систему (входит в состав экстрапирамидальной) отвечают непосредственно за сокращение мышц. По сути, отдел обеспечивает связь базальных ядер с корой головного мозга, регулирует интенсивность и скорость движения конечностей, а также их силу.

Область базальных ядер располагается в белом веществе лобной доли. Умеренная дисфункция ганглий мозга приводит к незначительным отклонениям двигательной функции, особенно заметной при движении: ходьбе и беге пациента.

Функциональное значение базальных ядер также связано с работой гипоталамуса и . Зачастую любые нарушения в структуре и функциональности ганглий сопровождаются дисфункцией питуитарной железы и нижнего отдела полушарий большого мозга.

Виды нарушений и дисфункции ганглий

Поражение базальных ганглий головного мозга отражается на общем самочувствии пациента. Принято считать, что патологические изменения являются катализаторами возникновения следующих болезней:

Признаки дисфункции базальных структур мозга

Патологические нарушения в базальной поверхности головного мозга моментально отражаются на двигательных функциях и моторике пациента. Врач может обратить внимание на следующие симптомы:

Если участки пониженной плотности базальных отделов мозга соединены с другими долями полушарий и нарушения распространяются в соседние отделы, наблюдаются проявления, связанные с памятью, мыслительными процессами.

Для точной диагностики отклонений специалист назначит дополнительные инструментальные диагностические процедуры:

  1. Тесты.
  2. УЗИ головного мозга.
  3. Компьютерная и магнитно-резонансная томография.
  4. Клинические анализы.
Прогноз заболевания зависит от степени поражения и причин, вызвавших заболевание. При неблагоприятном течении патологических изменений назначается пожизненный курс приема препаратов. Оценить тяжесть поражения и назначить адекватную терапию, может только квалифицированный врач – невролог.

Тремя бороздами полушария делятся на переднюю(старый мозжечок), заднюю(наиболее молодое образование - Neo cerebellum) и блоково-модулярную зону(узелок и клочок - самые древние части мозжечка)

С точки зрения функциональной мозжечок принято делить на три части -

Первый - вестибулярный мозжечок (узелок, клочок и прилегающие частично к этим образованиям участки задней доли) К этим структурам подходят первичные сигналы от рецепторов вестибулярного аппарата, также вторичные чувствительные сигналы от ядер продолговатого мозга(вестибулярных ядер). Афферентные волокна подходят к ядру шатра, которое расположено в белом веществе шатра. Вестибулярный мозжечок контролирует положении глаз, положение тела и походку.

Второй функциональный отдел мозжечка - спинальный мозжечок . В него входит червь и прилегающие к червю участки передней и задней доли. Именно в этой зоне заканчиваются спиномозжечковые пути, которые передают информацию от проприо рецепторов о положении конечностей и мышечных сокращениях. Эта информация может поступать к мозжечку дискретно(или постоянно). Эта информация используется для регуляции движений туловища(проксимальных отделов конечностей)

Третий - боковые отделы полушарий мозжечка(корковый мозжечок ). Получает информацию от коры больших полушарий. Эти пути идут через ядра моста и средние ножки мозжечка. Участвует в регуляции дистальных отделов конечностей. Участвует в планировании последовательности движений и распределение фаз в движении во времени. Мозжечок принимает в развитии зрительных и слуховых феноменов. На основании этой деятельности человек может предсказать по изменении зрительных явлений, как он быстро приближается к чему-либо.

К мозжечку поступает информация от ядер нижних олив. И к нижним оливам подходят пути от вестибулярной системы, спинного мозга и коры больших полушарий. От нижних олив начинается афферентный оливоцеребеллярный тракт к мозжечку. Этот тракт перекрещивается по средней линии и вступает в мозжечок и волокна этого тракта принадлежат к так называемым лазящим волокнам. Лазящие волокна передают возбуждение на ядра мозжечка, а также активируют главные клетки коры мозжечка - клетки Пуркинье . Все другие афферентные пути к мозжечку состоят из мшистых волокон. Мшистые волокна оказывают возбуждающие влияние на ядра мозжечка и активируют зернистые клетки . В мозжечок афферентная информация поступает из:

Спинного мозга , от проприорецепторов мышц, сухожилий, суставов по вентральному и дорсальному спинно-мозжечковым путям. Второй источник - вестибулярные ядра . Третий - от коры больших полушарий поступает информация, которые содержат копии двигательных команд, которые кора посылает в спинной мозг для исполнения движений. Четвертый источник - ретикулярная формация из которой идет диффузная информация на нейроны коры мозжечка. Мозжечок также получает импульсы от зрительных, слуховых рецепторов, от верхних и нижних бугорков четверохолмия.

Эфферентные пути мозжечка начинаются от 4х его ядер - зубчатого, шаровидного, пробковидного и ядро Шатра. От ядер мозжечка импульс направляется к двигательным центрам - красное ядро, вестибулярное, ядра ретикулярной формации. А также от мозжечка эфферентные пути через вентролатеральный отдел зрительного бугра информация передается в двигательные и соматосенсорные зоны коры больших полушарий. Основными клетками, которые обеспечивают выходной сигнал из мозжечка - клетки Пуркинье - крупные тормозные нейроны. Все выходные сигналы носят тормозной характер. В коре мозжечка выделяют 5 типов клеток - клетки Пуркинье(очень развито дендритное дерево). Клеток Пуркинье - 15000000 в коре мозжечка, клетки Гольджи, корзинчатые, зернистые, звездчатые. Клетки вместе с их волокнами - кора мозжечка. Кора мозжечка составляет 10% от коры больших полушарий(по массе). А по площади кора мозжечка 75% коры больших полушарий - обусловлено многочисленными складками. Различают три слоя: поверхностный - молекулярный, средний- клеток Пуркинье, внутренний - зернистый.

В белом веществе находятся ядра мозжечка. К мозжечку идет информация по 2м типам волооко - по лазящим - клетки Пуркинье, Моховидным - клетки зерна. Зернистые клетки обладаю особенностью - их аксон уходит из зернистого в поверхностный слой, где он Т образно делится на параллельные волокна. Эти волокна от клеток зерен образуют возбуждающие синапсы на 4х клетках мозжечка. Они оказывают более слабое возбуждающие действие, нежели лазящие волокна на клетки Пуркинье. 4 этих типа клеток являются тормозными. Корзинчатые и звездчатые клетки тормозят клетки Пуркинье. Клетки Гольджи тормозят клетки зерна. В начале афферентные волокна возбуждают ядра мозжечка т.е. первый сигнал от ядер мозжечка будет возбуждающим, но позднее, когда будет возбуждаться клетка Пуркинье, она будет оказывать на ядра мозжечка уже тормозное действие. Вначале движения мозжечок усиливает двигательный сигнал.

Все наши движения - маятникообразные, во время движения появляется инерция. Когда мы стремимся достичь какой то цели рука «проходит» эту цель, дальше кора дает сигнал и все заново. Чтобы этого не было мозжечок вовремя включает и выключает мышцы антагонисты. В ходе влияния мозжечка достигается плавность. Клетки Пуркинье хранят информацию необходимую для координации движений. Импульс от стопы до коры доходит за 0,25 мс. Информация от проприорецепторов не дает реального состояния - она показывает скорость. Эта информация используется мозгом для планирования нового этапа движений. Происходит сложная работа для координации движений. Происходит планирование зрительного образа - кора на основе работы с мозжечком предугадывает что будет дальше.

Мозжечок - аппарат сравнения. Он получает информацию от проприорецепторов мышц и в нем хранятся команды для движения. В нем происходит анализ информации и команд. Мозжечок может внести коррекцию. В этом нам помогают обратные связи - от зрительных, слуховых анализаторов. Внести информацию можно только тогда, когда движения исполняются медленно. Быстры движения - бросок мяча в кольцо., на музыкальных инструментах. Высокоскоростные - баллистические движения. Речь - тоже баллистическое движение. Программа формируется при взаимодействия мозжечка, скорой больших полушарий в ходе обучения движения, а затем хранятся в мозжечке и кора при необходимости их совершения достает нужную информацию. Клетки Пуркинье обучаются. Когда они уже обучены - движения слажены.

При его поражении возникают различные симптоматики.

Удаление мозжечка. При поражении мозжечка - Стадия выпадения функции, стадия компенсации

  1. Атаксия - невозможность выполнить последовательность движений(пьяная походка - пошатываясь, широко расставляя ноги, что особенно сказывается на поворотах).
  2. Астазия - мышцы утрачивают способность к слитному тетаническому сокращению. Поэтому при попытке сокращения возникает дрожание. Мозжечковый тремор. В покое, когда человек не предпринимает попытку совершить движении, дрожания нет.
  3. Интенционный тремор - при попытке совершить движение возникает дрожание
  4. Дистания - нарушение тонуса мышц. Сначала атония, потом гипертония
  5. Астения - легкая утомляемость.
  6. Адиадохокинез - невозможность совершить противоположные движения - суппонация, пронация.
  7. Дисметрия - нарушение способности оценивать расстояния и появление промахивания.
  8. Асинергия - выражается в том, что движения перестают быть плавными, становятся дерганными, нарушается взаимосвязь
  9. Дезэквилибрация - нарушение равновесия.

Абазия - при нарушении тела в пространстве. Мозжечок контролирует и вегетативные реакции. При расстройствах мозжечка наблюдаются нарушение в сокращении сердца, изменения артериального давления, изменение тонусам мышц в кишечнике. Регуляция вегетативных функций осуществляется через ретикулярную формацию и гипоталамческую область.

Физиология базальных ганглиев.

К базальным ганглиям относят комплекс нейронных узлов серого вещества, которые располагаются в белом веществе больших полушарий головного мозга. Эти образования называют стриополитарной системой. Относится хвостатое ядро, скорлупа - вместе они образуют полосатое тело . Бледный шар на разрезе состоит из 2х сегментов - наружного и внутреннего. Наружный сегмент бледного шара имеет общее происхождение с полосатым телом. Внутренний сегмент развивается из серого вещества промежуточного мозга. Эти образования имеют тесную связь с субталамическими ядрами промежуточного мозга, с черной субстанцией среднего мозга, которая состоит из двух частей - вентральной части(сетчатой) и дорсальной(компактная).

Нейроны компактной части вырабатывают дофамин. А сетчатая часть черной субстанции по строению и функциям напоминает нейроны внутреннего сегмента бледного шара.

Черная субстанция образует связи с передним вентральным ядром зрительного бугра, бугорками четверохолмия, с ядрами моста и двухсторонние связи с полосатым телом. Эти образования получают афферентные сигналы и сами формируют эфферентные пути. Чувствительные пути к базальным ганглиям идут от коры больших полушарий и главный афферентный путь начинается от моторной и премоторной зоны коры.

Корковое поля 2,4,6,8. Эти пути идут к полосатому телу и бледному шару. Имеется определенная топография проекции мышц дорсальной части скорлупы представлены мышцы ног, рук, а в вентральной части - рта и лица. От сегментах бледного шара идут пути к зрительному бугру переднем вентральному и вентролатеральному ядрам, от которых информация будет возвращаться в кору.

Большое значение играют пути к базальным ядрам от зрительных бугров. Обеспечивают получение сенсорной информации. К базальным ядрам также через зрительный бугор передаются влияния от мозжечка. Также имеются чувствительные пути к полосатому телу от черной субстанции. Эфферентные пути представлены связями полосатого тела с бледными шарами, с черной субстанцией, ретикулярной формацией ствола мозга, от бледного шара идут пути к красному ядру, к субталамическим ядрам, к ядрам гипоталамуса и зрительных бугров. На подкорковом уровне сложные кольцевые взаимодействия.

Связи коры больших полушарий, зрительного бугра базальные ганглии и снова кора формируют два пути: прямой(обеспечивает облегчение прохождения импульсов) и непрямой(тормозной)

Непрямой путь. Оказывает тормозящее действие. Этот путь тормозной идет от полосатого тела к наружному сегменту бледного шара и полосатое тело тормозит наружный сегмент бледного шара. Наружный сегмент бледного шара тормозит Люисово тело, которое в норме оказывает возбуждающие действие на внутренний сегмент бледного шара. В этой цепочке есть два последовательных торможения.

Черная субстанция(вырабатывает дофамин) В полосатом теле есть 2 вида рецепторов Д1- возбуждающие, Д2 - тормозящие. Полосатое тело с черной субстанцией два тормозящих пути. Черная субстанция тормозит полосатое тело дофамином, а полосатое тело черную субстанцию ГАМК. Высокое содержание меди в черной субстанции, синем пятне ствола мозга. Возникновение стриополитарной системы было необходимо для совершения перемещения тело в пространстве - плаванье, ползанье, полет. Эта система образует связь с подкорковыми двигательными ядрами(красное ядро, покрышка среднего мозга, ядра ретикулярной формации, вестибулярные ядра) От этих образований - нисходящие пути в спинной мозг. Все это вместе образует экстрапирамидную систему.

Двигательная активность реализуется через пирамидную систему - нисходящие пути. Каждое полушарие связано с противоположной половиной тела. В спинном мозге с альфа моторными нейронами. Через пирамидную систему реализуются все наши желания. Она работает с мозжечком, экстрапирамидной системы и выстраивается несколько контуров - кора мозжечка, кора, экстрапирамидная система. Зарождение мысли возникает в коре. Для того, чтобы его совершить необходим план движения. Который включает в себя несколько компонентов. Они связываются в один образ. Для этого нужны программы. Программы быстрых движений - в мозжечке . Медленных - в базальных ганглиях. Кора выбирает необходимые программы. Она создает единственную общую программу, которая будет реализовано через спинальные пути. Чтобы сделать бросок мяча в кольцо нам нужно принять определенную позу, распределить тонус мышц - это все на подсознательном уровне - экстрапирамидная система. Когда все будет готово произойдет само движение. Стриополитарная система может обеспечивать стереотипные заученные движения - ходьба, плаванье, езда на велосипеде, но только когда они заучены. При выполнение движение стриополитарная система определяет масштаб движений - амплитуда движений. Масштаб определяется стриополитарной системой. Гипотония-пониженный тонус с гиперкинезом - повышенная двигательная активность.

Симптомы поражения базальных ганглиев

К чисту гиперкинезов(сопровождаются снижением тонуса мышц) относятчя

-Хорея - связана с дегеративными поражениями схвостатого ядра и проявляется в возникновении быстрых танцующих движений. Возникает богатая мимика, непрерывная игра пальцами рук, причмокивание, развивается в результате ревматического поражения. Все движения непроизвольные

-Атетоз - обусловлен поражением скорлупы и бледного шара и характеризуется медленными, извивающимися движениями - червеобразными движениями, которые начинаются с дистальных отделов конечностей и постепенно пермещаются на проксимальные.

-Баллизм - размашистые движения верхних и нижних конечностей

-Болезнь Гентингтона - утрата холинергических и ГАМК секретируещих нейронов полосатого тела. Это генетическое заболевание. Оно развивается в результате появление аномального гена в4ой хромосоме. Развивается от 14 до 50 лет, сопровождается с движениями, характерными для «Хорея» и одновременно развивается прогрессирующие слабоумие. Заболевание приводит к гибели через 15-20 лет.

Гиперкинез в сочетании с гипертонией - Болезнь Паркинсона(уменьшение выработки дофамина в нейронах компактной части черной субстанции. Черная субстанция оказывает тормозящее действие на полосатое тело. Таким образом снижается содержание дофамина в полосатом теле. Симптомы - снижение дофамина до 50 % от нормы. Одновременно снижается содержание и норадреналина в гипоталамусе.). Симптомы - мелкие движения пальцев рук, мимика, гипертония(повышается тонус мышц, в основном сгибателей. Поза - руки приведены к туловищу, колени согнуты, голова прижата. Дрожание в покое - Тренор , маскообразное лицо, замедленная речь). Симптом складного ножа -попытка согнуть руку в локтевом суставе - сначала большое сопротивление, а потом легко. Симптом зубчатого колеса - периодическая смена повышения и снижения тонуса.

Вводят препараты Эльдофа - могут проникать через гемоэнцефалический барьер и превращаются в дофамин. Помогают блокаторы, которые разрушает норажреналин и дофамин. Есть попытки вживления клеток, взятых у мертвых новорожденных из черной субстанции


В основании больших полушарий (нижняя стенка боковых желудочков) расположены ядра серого вещества - базальные ганглии. Они составляют примерно 3% от объема полушарий. Все базальные ганглии функционально объединены в две системы. Первая группа ядер представляет собой стриопаллидарную систему (рис. 41, 42, 43). К ним относятся: хвостатое ядро (nucleus caudatus), скорлупа (putamen) и бледный шар (globus pallidus). Скорлупа и хвостатое ядро имеют слоистую структуру, и поэтому их общее название - полосатое тело (corpus striatum). Бледный шар не имеет слоистости и выглядит светлее стриатума. Скорлупа и бледный шар объединены в чечевицеобразное ядро (nucleus lentiformis). Скорлупа образует наружный слой чечевицеобразного ядра, а бледный шар - внутренние его части. Бледный шар, в свою очередь, состоит из наружного

и внутреннего члеников.
Анатомически хвостатое ядро тесно связано с боковым желудочком. Расположенная впереди и медиально расширенная его часть - головка хвостатого ядра образует боковую стенку переднего рога желудочка, тело ядра - нижнюю стенку центральной части желудочка, а тонкий хвост - верхнюю стенку нижнего рога. Следуя форме бокового желудочка, хвостатое ядро охватывает дугой чечевицеобразное ядро (рис. 42, 1; 43, 1/). Друг от друга хвостатое и чечевицеобразное ядра отделены прослойкой белого вещества - частью внутренней капсулы (capsula interna). Другая часть внутренней капсулы отделяет чечевицеобразное ядро от нижележащего таламуса (рис. 43,
4).
80

(справа - ниже уровня дна бокового желудочка; слева - над дном бокового желудочка; IV желудочек мозга вскрыт сверху):
1 - головка хвостатого ядра; 2 - скорлупа; 3 - кора мозгового островка; 4 - бледный шар; 5 - ограда; 6

Таким образом, строение дна бокового желудочка (представляющего собой стриопаллидарную систему) схематично можно представить себе так: стенку самого желудочка образует слоистое хвостатое ядро, затем ниже идет прослойка белого вещества -
81

Рис. 42. Топография базальных ядер конечного мозга и стволовых структур (вид
слева спереди):
1 - хвостатое ядро; 2 - скорлупа; 3 - миндалина; 4 - черная субстанция; 5 - лобная кора; 6 - гипоталамус; 7 - таламус

Рис. 43. Топография базальных ядер конечного мозга и стволовых структур (вид
слева сзади):
1 - хвостатое ядро; 2 - скорлупа; 3 - бледный шар; 4 - внутренняя капсула; 5 - субталамическое ядро; 6

  • черная субстанция; 7 - таламус; 8 - подкорковые ядра мозжечка; 9 - мозжечок; 10 - спинной мозг; 11
1 2 3 4

внутренняя капсула, под ней слоистая скорлупа, еще ниже бледный шар и опять слой внутренней капсулы, лежащий на ядерной структуре промежуточного мозга - таламусе.
Стриопаллидарная система получает афферентные волокна от неспецифических медиальных таламических ядер, лобных отделов коры больших полушарий, коры мозжечка и черной субстанции среднего мозга. Основная масса эфферентных волокон стриатума радиальными пучками сходится к бледному шару. Таким образом, бледный шар является выходной структурой стриопаллидарной системы. Эфферентные волокна бледного шара идут к передним ядрам таламуса, которые связаны с фронтальной и теменной корой больших полушарий. Часть эфферентных волокон, не переключающихся в ядре бледного шара, идет к черной субстанции и красному ядру среднего мозга. Стриопаллидум (рис. 41; 42), совместно со своими проводящими путями, входит в экстрапирамидную систему, оказывающую тоническое влияние на моторную деятельность. Эта система контроля над движениями называется экстрапирамидной потому, что переключается на пути к спинному мозгу, минуя пирамиды продолговатого мозга. Стриопаллидарная система является высшим центром непроизвольных и автоматизированных движений, снижает мышечный тонус, тормозит движения, осуществляемые двигательной корой. Латеральнее стриопаллидарной системы базальных ганглиев расположена тонкая пластинка серого вещества - ограда (claustrum). Она ограничена со всех сторон волокнами белого вещества

  • наружной капсулой (capsula externa).
Остальные базальные ядра входят в лимбическую систему мозга (см. раздел 6.2.5.3). Впереди от

конца нижнего рога бокового желудочка в белом веществе височной доли больших полушарий расположена плотная группа ядер - миндалевидное тело (amigdalae) (рис. 42, 3). И наконец, в пределах прозрачной перегородки лежит ядро перегородки (nucleus septipellucidi) (см. рис. 37, 21). Кроме перечисленных базальных ядер в лимбическую систему входят: кора поясной извилины лимбической доли больших полушарий, гиппокамп, мамиллярные ядра гипоталамуса, передние ядра таламуса, структуры обонятельного мозга.

Часть головного мозга, расположенная ниже коры, в основном представлена, как я уже упоминал, белым веществом, из которого состоят покрытые миелином нервные волокна. Например, непосредственно над желудочками - полостями головного мозга - располагается мозолистое тело, которое связывает между собой правое и левое полушария головного мозга.

Нервные волокна, пересекающие мозолистое тело, объединяют головной мозг в единое функциональное целое, но потенциально полушария могут работать и независимо друг от друга.

Для пояснения можно привести пример глаз. У нас два глаза, которые обычно действуют совместно, как одно целое. Тем не менее если мы закроем один глаз, то сможем видеть достаточно хорошо и одним глазом. Одноглазого человека ни в коем случае нельзя считать слепцом. Точно так же удаление одного полушария у экспериментального животного не делает его безмозглым. Оставшееся полушарие, в той или иной мере, берет на себя функции удаленного. Обычно каждое полушарие отвечает, в первую очередь, за «свою» половину тела. Если, оставив на месте оба полушария, пересечь мозолистое тело, то координация действия половин головного мозга утрачивается, и обе половины тела переходят под более или менее независимый контроль не связанных между собой полушарий мозга. В буквальном смысле у животного образуется два мозга. Такие опыты были выполнены на обезьянах. (После рассечения мозолистого тела рассекали еще некоторые волокна зрительных нервов, чтобы каждый глаз был связан только с одним полушарием мозга.) После такой операции можно было тренировать каждый глаз в отдельности для выполнения различных задач. Например, обезьяну можно научить ориентироваться на крест в круге, как на маркер контейнера с пищей. Если во время обучения оставить открытым только левый глаз, только он будет натренирован на решение задачи. Если после этого закрыть обезьяне левый глаз и открыть правый, то она не справится с задачей и будет искать пищу методом проб и ошибок. Если каждый глаз натренировать на решение противоположных задач, а потом открыть оба глаза, то обезьяна будет решать их поочередно, меняя деятельность. Создается такое впечатление, что полушария мозга каждый раз вежливо передают друг другу эстафетную палочку.

Естественно, в такой двусмысленной ситуации, когда функциями тела управляют два независимых мозга, всегда существует опасность путаницы и внутренних конфликтов. Чтобы избежать такого положения, одно из полушарий (у человека почти всегда левое) становится доминирующим, то есть господствующим. Управляющая речью зона Брока, о которой я упоминал, расположена в левом полушарии, а не в правом. Левое полушарие управляет правой половиной тела, и это объясняет тот факт, что подавляющее большинство людей на Земле - правши. При этом даже у левшей доминирующим полушарием является все-таки левое. Амбидекстры, у которых нет явно выраженного доминирования какого-то одного полушария, иногда испытывают трудности с формированием речи в раннем детстве. Подкорковые участки головного мозга состоят не только из белого вещества. Под корой расположены также компактные участки серого вещества. Они называются базальными ганглиями1.

1 Слово «ганглий» имеет греческое происхождение и означает «узел». Гиппократ и его последователи называли этим словом похожие на узелки подкожные опухоли. Гален, римский врач, работавший около 200 года нашей эры, начал использовать этот термин для обозначения скоплений нервных клеток, выступающих по ходу нервных стволов. В таком смысле это слово употребляется и в настоящее время.

Выше других базальных ганглиев в под корке располагается хвостатое ядро. Серое вещество хвостатого ядра загибается книзу, образуя при этом миндалевидное ядро. Сбоку от миндалевидного ядра расположено чечевицеобразное ядро, а между ними прослойка белого вещества, называемая внутренней капсулой. Ядра не являются полностью однородными образованиями, в них присутствует и белое вещество проводящих путей, по которым проходят миелинизированные нервные волокна, что придает базальным ганглиям полосатую исчерченность. Из-за этого оба ядра получили объединяющее наименование полосатого тела.

Внутри купола, образованного комплексом полосатого тела, хвостатого ядра и чечевицеобразного ядра, находится еще один большой участок серого вещества, который называется таламусом или зрительным бугром.

Базальные ганглии трудно изучать, так как они скрыты глубоко под корой полушарий большого мозга. Имеются, однако, указания на то, что подкорковые базальные ганглии играют большую роль в функциях мозга - как активных, так и пассивных. Белое вещество полосатого тела можно считать в каком-то смысле узким бутылочным горлышком. Его должны миновать все двигательные нервные волокна, идущие от коры, и все чувствительные нервные волокна, восходящие к коре. Следовательно, любое повреждение в этой области приведет к обширному поражению телесных функций. Такое поражение может, например, лишить чувствительности и способности к движению всю половину тела, противоположную тому полушарию, в котором произошло повреждение подкорковых ганглиев. Такое одностороннее поражение называется геминлегией («инсульт половины тела», греч.). (Утрата способности к движению называется греческим термином «паралич», что означает «расслабленность». Мышцы, если можно так выразиться, расслабляются. Заболевание, которое приводит к внезапному развитию паралича, часто называют инсультом или ударом, потому что человек, пораженный этим недугом, внезапно падает с ног, словно от удара невидимым тупым предметом по голове.)

Было высказано предположение, что одной из функций базальных ганглиев является контроль над деятельностью двигательной области коры полушарий большого мозга. (Эта функция присуща экстрапирамидной системе, частью которой являются базальные ганглии.) Подкорковые узлы удерживают кору от слишком опрометчивых и скорых действий. При нарушениях в базальных ганглиях соответствующие участки коры начинают разряжаться бесконтрольно, что приводит к судорожным непроизвольным сокращениям мускулатуры.

Обычно такие нарушения касаются мышц шеи, головы, кистей рук и пальцев. В результате голова и руки постоянно мелко дрожат. Это дрожание особенно заметно в покое. Оно уменьшается или исчезает, когда начинается какое-либо целенаправленное движение. Другими словами, дрожь пропадает, когда кора приступает к реальным действиям, а не продуцирует отдельные ритмичные разряды.

Мышцы других групп становятся в таких случаях аномально неподвижными, хотя настоящего паралича при этом нет. Мимика теряет живость, лицо становится маскообразным, походка скованной, руки висят вдоль тела неподвижно, не совершая движений, характерных для ходьбы. Это сочетание сниженной подвижности плеч, предплечий и лица с повышенной патологической подвижностью головы и кистей рук получило противоречивое название дрожательного паралича. Дрожательный паралич был впервые детально описан английским врачом Джеймсом Паркинсоном в 1817 году и с тех пор носит название болезни Паркинсона.

Некоторое облегчение приносит намеренное повреждение определенных базальных ганглиев, которые, как представляется, являются причиной «собачьей дрожи». Один способ заключается в прикосновении тонким зондом к пораженному участку, что прекращает тремор (дрожь) и ригидность (неподвижность). Потом этот участок уничтожают жидким азотом, имеющим температуру -50 °С. При рецидиве симптоматики процедуру можно повторить. Очевидно, неработающий узел лучше, чем работающий плохо.

В некоторых случаях поражение базальных ганглиев приводит к появлению более обширных нарушений, проявляющихся в виде спастических сокращений больших массивов мышц. Создается впечатление, что больной исполняет неуклюжий судорожный танец. Эти движения называются хореей («хорея» - «танец», греч.). Хорея может поражать детей после перенесенного ревматизма, когда инфекционный процесс затрагивает подкорковые образования мозга. Первым эту форму заболевания описал в 1686 году английский врач Томас Сайденхем, поэтому она называется хореей Сайденхема.

В Средние века наблюдались даже эпидемические вспышки «плясовых маний», которые временами охватывали области и провинции. Вероятно, это не были эпидемии истинной хореи, корни этого явления надо искать в психических нарушениях. Надо думать, что психические мании явились результатом наблюдения случаев истинной хореи. Кто-то впадал в такое же состояние по причине истерической мимикрии, другие следовали его при-

меру, что и приводило к вспышкам. Родилось поверье, что исцелиться от этой мании можно, совершив паломничество к гробнице святого Витта. По этой причине хорею Сайденхема называют также «пляской святого Витта».

Существует также наследственная хорея, которую часто называют хореей Гентингтона, по имени американского врача Джорджа Саммера Гентингтона, который впервые описал ее в 1872 году. Это более серьезное заболевание, чем пляска святого Витта, которая в конечном счете излечивается самопроизвольно. Хорея Гентиигтона проявляется впервые в зрелом возрасте (между 30 и 50 годами). Одновременно развиваются и психические расстройства. Состояние больных постепенно ухудшается, и в конце концов наступает смерть. Это наследственное заболевание, о чем говорит одно из его названий. Из Англии в Соединенные Штаты когда-то переселились два брата, страдавших хореей Гентингтона. Считается, что все больные в США являются потомками этих братьев.

Таламус является центром соматосенсорной чувствительности - центром восприятия прикосновения, боли, тепла, холода и мышечного чувства. Это очень важная составная часть ретикулярной активирующей формации, которая принимает и просеивает поступающие сенсорные данные. Самые сильные стимулы, такие, как боль, чрезвычайно высокая или низкая температура, отфильтровываются в таламусе, а более мягкие стимулы в виде прикосновений, тепла или прохлады проходят дальше, к коре мозга. Возникает такое впечатление, что коре можно доверить только незначительные стимулы, которые допускают неторопливое рассмотрение и неспешную реакцию. Грубые стимулы, которые требуют немедленной реакции и не терпят отлагательства, быстро обрабатываются в таламусе, после чего следует более или менее автоматическая реакция.

Из-за этого существует тенденция различать кору - центр холодных размышлений - и таламус - очаг горячих эмоций. Действительно, именно таламус контролирует деятельность мимических мышц в условиях эмоционального стресса, так что, даже если корковый контроль тех же мышц поражен и лицо остается маскообразным в спокойном состоянии, оно может внезапно исказиться судорогой в ответ на сильную эмоцию. Кроме того, животные с удаленной корой очень легко впадают в ярость. Несмотря на эти факты, представление о таком разграничении функций между корой и таламусом является недопустимым упрощением. Эмоции не могут возникать из какой-то одной, очень малой части головного мозга - это надо четко сознавать. Появление эмоций - это сложный интегративный процесс, включающий в себя деятельность коры лобной и височных долей. Удаление височных долей у экспериментальных животных ослабляет эмоциональные реакции, несмотря на то что таламус остается нетронутым.

В последние годы исследователи обратили пристальное внимание на самые древние в эволюционном плане участки подкорковых структур старого обонятельного мозга. Эти структуры связаны с эмоциями и провоцирующими сильные эмоции стимулами - сексуальными и пищевыми. Этот участок, как представляется, координирует сенсорные данные с телесными потребностями, другими словами, с висцеральными потребностями. Участки висцерального мозга были названы Брока лимбической долей («лимб» по-латыни означает «граница»), так как этот участок окружает и отграничивает от остального мозга мозолистое тело. По этой причине висцеральный мозг иногда называют лимбической системой.

К базальным ганглиям относятся следующие анатомические образования: полосатое тело (стриатум), состоящее из хвостатого ядра и скорлупы; бледный шар (паллидум), подразделяющийся на внутренний и внешний отделы; черная субстанция и субталамическое ядро Льюиса.

Функции БГ:

1. Центры сложных безусловных рефлексов и инстинктов

2. Участие в формировании условных рефлексов

3. Координация тонуса мышц и произвольных движений. Контроль амплитуды, силы, направления движений

4. Координация сочетанных двигательных актов

5. Контроль за движением глаз (саккады).

6. Программирование сложных целенаправленных движений

7. Центры торможения агрессивных реакций

8. Высшие психические функции (мотивации, прогнозирование, познавательная деятельность). Сложные формы восприятия внешней информации (например, осмысление текста)

9. Участие в механизмах сна

Афферентные связи базальных ганглиев . Большая часть афферентных сигналов, приходящих к базальным ганглиям поступает в полосатое тело. Эти сигналы исходят почти исключительно из трех источников:

От всех областей коры больших полушарий;

От внутрипластинчатых ядер таламуса;

От черной субстанции (по дофаминэргическому пути).

Эфферентные волокна от стриатума идут к бледному шару и черной субстанции. От последней начинается не только дофаминэргический путь к полосатому телу, но и пути, идущие к таламусу.

От внутреннего отдела бледного шара берет начало самый важный из всех эфферентных трактов базальных ганглиев, заканчивающийся в таламусе, а так же в крыше среднего мозга. Посредством стволовых образований, с которыми связаны базальные ганглии, центробежные импульсы следуют к сегментарным двигательным аппаратам и мускулатуре по нисходящим проводникам.

От красных ядер - по руброспинальному тракту;

От ядра Даркшевича – по заднему продольному пучку к ядрам 3, 4,6 нервов и через его посредство к ядру вестибулярного нерва;

От ядра вестибулярного нерва – по вестибулоспинальному тракту;

От четверохолмия - по тектоспинальному тракту;

От ретикулярной формации - по ретикулоспинальному тракту.

Таким образом, базальные ганглии играют, главным образом, роль промежуточного звена в цепи, связываемой двигательные области коры со всеми остальными ее областями.

В раннем филогенезе, когда кора головного мозга еще не была развита, стриопаллидарная система являлась главным двигательным центром, определяющим поведение животного. Чувствительные импульсы, притекающие из зрительного бугра, перерабатывались здесь в двигательные, направляющиеся к сегментарному аппарату и мускулатуре. За счет стрио-паллидарных аппаратов осуществлялись диффузные движения тела достаточно сложного характера: передвижения, плавание и др.


Одновременно с этим обеспечивалась поддержка общего мышечного тонуса, «готовность» сегментарного аппарата к действию, перераспределение мышечного тонуса при движениях.

При дальнейшей эволюции нервной системы ведущая роль в движениях переходит к коре головного мозга с ее двигательным анализатором и пирамидной системой. Наконец, у человека возникают сложнейшие действия, носящие целенаправленный, произвольный характер с тонкой дифференцировкой отдельных движений.

Тем не менее, стриопаллидарная система не утратила своего значения у человека. Она лишь переходит в соподчиненное, субординированное положение, обеспечивая «настройку» двигательных аппаратов, их «готовность к действию» и необходимый для быстрого осуществления движения мышечный тонус.

Становление функции базальных ганглиев в онтогенезе . Базальные ганглии развиваются интенсивнее, чем зрительные бугры. Бледное ядро миелинизируется раньше, чем полосатое тело и кора головного мозга. Установлено, что миелинизация в бледном шаре почти полностью заканчивается к 8 месяцам развития плода. В полосатом теле миелинизация начинается у плода, а заканчивается только к 2 месяцам жизни. Хвостатое тело в течение первых 2 лет жизни увеличивается в 2 раза, что связывают с развитием у ребенка автоматических двигательных актов.

Двигательная активность новорожденного в значительной мере связана с бледным ядром, импульсы от которого вызывают некоординированные движения головы, туловища и конечностей.

У новорожденного паллидум уже имеет связи со зрительным бугром, подбугровой областью и черной субстанцией. Связь паллидума со стриатутом развивается позже, часть стриопаллидарных волокон оказывается миелинизированная на первом месяце жизни, а другая часть - лишь к 6 месяцам и позже.

Считают, что такие акты, как плач, в моторном отношении осуществляются за счет одного паллидума. С развитием полосатого тела связано появление мимических движений, а затем умение сидеть и стоять. Так как стриатум оказывают тормозное влияние на паллидум, то создается постепенное разделение движений. Для того чтобы сидеть, ребенок должен уметь вертикально держать голову и спину. Это появляется у него к двум месяцам. Сидеть начинает к 6-8 месяцам.

В первые месяцы жизни у ребенка имеется отрицательная реакция опоры: при попытке поставить его на ножки он поднимает их и подтягивает к животу. Затем эта реакция становится положительной: при прикосновении к опоре ножки разгибаются. В 9 месяцев ребенок может стоять с помощью поддержки, в 10 месяцев он стоит свободно.

С 4-5 месячного возраста довольно быстро развиваются произвольные движения, но они еще длительное время сопровождаются многообразными дополнительными движениями.

Появление произвольных (таких как схватывание) и выразительных движений (улыбка, смех) связывают с развитием стриатной системы и двигательных центров коры больших полушарий. Громко смеяться ребенок начинает с 8 месяцев.

По мере роста и развития всех отделов головного мозга и коры больших полушарий движение ребенка становится менее обобщенными и более координированными. Только к концу дошкольного периода устанавливается определенное равновесие коркового и подкоркового двигательных механизмов.