Марганец в крови

Определение концентрации марганца в крови, используемое для диагностики острой и хронической интоксикации марганцем, а также для оценки баланса этого микроэлемента в организме.

Синонимы русские

Марганец в сыворотке крови.

Синонимы английские

Mn, Manganese, Serum.

Метод исследования

Атомно-адсорбционная спектрометрия (ААС).

Единицы измерения

Мкг/л (микрограмм на литр).

Какой биоматериал можно использовать для исследования?

Венозную кровь.

Как правильно подготовиться к исследованию?

  1. Не принимать пищу в течение 2-3 часов до исследования, можно пить чистую негазированную воду.
  2. Не курить в течение 30 минут до исследования.

Общая информация об исследовании

Марганец – элемент, встречающийся в свободном виде в живой природе, а также входящий в состав некоторых органических и неорганических соединений организма человека. Он необходим для формирования костной ткани, синтеза белков, молекул АТФ и регуляции клеточного метаболизма. Кроме того, марганец выступает в роли кофактора одной из разновидностей супероксиддисмутазы (марганцевой), нейтрализующей свободные радикалы, и ферментов глюконеогенеза.

Этот микроэлемент поступает в организм вместе с пищей. Он присутствует в большом количестве в лесных и грецких орехах, арахисе, шпинате, свекле, чесноке, абрикосах и некоторых других продуктах. Суточная потребность взрослого человека в марганце составляет 1,8-2,6 мг. В норме лишь 1-3 % поступающего с пищей марганца абсорбируется в кишке, большая же часть выводится с калом. Как и в случае с другими микроэлементами, концентрация марганца поддерживается на очень низком, но достаточном для обеспечения физиологических функций уровне. Нарушения его баланса могут носить острый или хронический характер и диагностируются с помощью анализа на марганец в крови.

Пищевое отравление солями марганца встречается крайне редко, так как обычно лишь малая его часть всасывается в кишке. Подавляющее большинство случаев отравления – это примеры хронической интоксикации, связанные с вдыханием марганцевой пыли. Наибольшему риску подвержены рабочие, занятые на добыче руды и производстве стали. Обширная поверхность легких обеспечивает быстрое всасывание марганца в кровь, откуда он поступает в различные органы. Отложение марганца в ткани головного мозга сопровождается развитием характерного клинического синдрома, называемого марганцевым паркинсонизмом. Его признаки включают в себя нарушение походки, "маскообразное" лицо, дистонию и слюнотечение. В отличие от идиопатического паркинсонизма, при этой форме отсутствует тремор в покое, но можно наблюдать постуральный и интенционный тремор. Дифференциальная диагностика идиопатического и марганцевого паркинсонизма обязательна, так как заболевания имеют разный прогноз и лечатся по-разному. Особенность марганцевого паркинсонизма заключается при отсутствии ответа на лечение препаратами дофамина и в необратимости изменений. Анализ на марганец в крови позволяет дифференцировать два этих состояния.

Также оценка уровня марганца в крови может потребоваться при обследовании молодого пациента с признаками нетипичного паркинсонизма. Некоторые люди, употребляющие и самостоятельно изготавливающие инъекционные наркотики, применяют в качестве окислителя перманганат калия, который вместе с наркотическим веществом поступает в кровь. В результате концентрация марганца у таких пациентов может составлять 2000-3000 мг/л (для сравнения в норме – 10-12 мг/л). Стойкое повышение уровня марганца повреждает нейроны черного вещества среднего мозга, что приводит к характерным симптомам. Клиническая картина марганцевого паркинсонизма может наблюдаться и у пациентов с заболеваниями печени – она является основным органом, обеспечивающим выведение марганца из организма. При циррозе печени экскреция этого элемента затруднена, в результате чего он аккумулируется в крови и ткани головного мозга.

Считается, что в силу некоторых физиологических особенностей дети более подвержены риску как энтерального, так и ингаляционного отравления марганцем. Так, например, употребление воды с повышенной концентрацией солей марганца имеет большее значение в развитии заболевания у детей, чем у взрослых. Кроме того, клинические проявления хронической интоксикации марганцем у детей также отличаются от симптоматики у взрослых. Марганец оказывает негативное влияние на передачу нервного импульса в дофаминергических путях, обеспечивающих внимание, координацию и познавательную деятельность. Поэтому его уровень в крови целесообразно измерять при обследовании ребенка с синдромом дефицита внимания и гиперактивности и с нарушением способности к обучению.

Вдыхание паров марганца также может приводить к развитию так называемой металлической лихорадки. Это состояние развивается через 3-12 часов после ингаляции паров оксида марганца и чаще наблюдается у сварщиков. Клиническая картина заболевания напоминает грипп: лихорадка, кашель, боль в горле, ощущение заложенности носа, одышка, слабость, миалгия. Особенность "металлической лихорадки" заключается в том, что все симптомы исчезают после прекращения контакта с парами металла (например, в выходные). При исследовании крови у таких пациентов иногда удается выявить повышение концентрации марганца. Следует отметить, что симптомы "металлической лихорадки" не являются специфичными для острого отравления марганцем и наблюдаются также при вдыхании паров оксида цинка, меди, железа, свинца и других металлов. Таким образом, анализ на марганец, а также на другие металлы в крови может быть использован при диагностике профессиональных болезней.

Дефицитом марганца сопровождаются некоторые редкие врождённые болезни обмена. Чаще его нехватка встречается у пациентов, длительное время находящихся на парентеральном питании. Признаки недостаточности марганца: нарушения роста и минерализации костей, метаболизма углеводов и жиров. Измерение концентрации марганца в крови таких пациентов необходимо для оценки баланса этого микроэлемента в организме.

Для чего используется исследование?

  • Для диагностики "металлической лихорадки" у сварщико.
  • Для диагностики марганцевого паркинсонизма у рабочих горнодобывающей промышленности, молодых людей, употребляющих инъекционные наркотики, и пациентов с циррозом печени.
  • Для диагностики хронической интоксикации марганцем у детей с синдромом дефицита внимания, у гиперактивных детей и детей с нарушением способности к обучению.
  • Для оценки баланса марганца в организме у пациента, находящегося на полном парентеральном питании.

Когда назначается исследование?

  • При симптомах:
    • паркинсонизма, особенно у рабочих горнодобывающей промышленности, молодых людей, употребляющих инъекционные наркотики, и пациентов с циррозом печени (нарушения походки и баланса, "маскообразное" лицо, дистония, постуральный и интенционный тремор);
    • гриппоподобного синдрома у сварщиков (лихорадка, кашель, боли в горле, ощущение заложенности носа, одышка, слабость, миалгия);
    • синдрома дефицита внимания и гиперактивности у детей (невозможность концентрации внимания, легкая отвлекаемость на внешние стимулы – игрушки, письменные принадлежности, – неспособность выполнять упражнения до конца, ждать своей очереди в играх, встревание в разговор, выкрики с места).
  • При наблюдении за пациентом, находящемся на полном парентеральном питании.

Что означают результаты?

Референсные значения: 0 - 2 мкг/л.

Причины повышения уровня марганца в крови:

  • острое или хроническое отравление марганцем;
  • цирроз печени.

Сразу хочу пояснить, что такое "повышенное содержание". Вода из скважины или колодцев, а также из других источников используется на различные цели: технические нужды, питьевые и т.д. В большинстве случаев нас всех интересует вопрос, можно ли воду пить. Чтобы на этот вопрос можно было с легкостью ответить, имея перед глазами протокол химического анализа, нам надо знать предельно допустимые концентрации (ПДК) того или иного компонента. Данные значения для питьевой воды регламентированы в СанПиН 2.1.4.1074-01. То есть, сравнивая результаты анализа с ПДК, приведенными в данном СанПиН 2.1.4.1074-01, мы можем понять, можно ли воду пить или нет. Для того, чтобы Вам не искать эти данные и не сидеть и скурупулезно сравнивать, в нашем протоколе анализа уже есть графа, содержащая показатели ПДК из СанПин и имеется вывод, соответствует ли вода СанПин или нет.

Чем опасно...

Железо

Предельно допустимая концентрация железа (Fe) в питьевой воде - 0,3 мг/л.

Влияние на сантехнику: Повышенное содержание железа в воде - одна из основных причин биообрастания водопроводных труб. Согласно последним исследованиям, источником слизи, образующейся на соединительных и стыковых элементах трубопровода, являются железобактерии. С течением времени биообрастания способны привести к повреждению и коррозии водопроводной арматуры.

Влияние на организм: Железо нередко становится причиной развития дерматитов, аллергических реакций, заболеваний печени и почек. Считается, что превышение предельно допустимой концентрации железа в воде способствует увеличению риска инфарктов и повреждения тканей при инсультах. Мало кто знает, что в присутствии кислорода железо проявляется канцерогенные свойства. Дело в том, что именно гидроокисные свободные радикалы являются причиной мутации ДНК и последующего развития раковых клеток. Как только механизм образования злокачественной опухоли запускается, поврежденные клетки начинают искать железо для подпитки.

Как снизить содержание железа: Самый простой и бюджетный способ обезжелезивания воды: Найти бак-накопитель достаточного размера из пищевого пластика, нержавейки и т. п. Установить его в подходящем месте, например на крыше. Организовать подачу воды из скважины через рассеиватель для душа (это улучшает аэрацию воды). Обеспечить забор отстоявшейся воды не с самого дна бака, а немного выше, чтобы осадок не попадал в водопровод. Оптимально, если размеры накопительного бака превышают суточный расход воды. Это позволяет с вечера набирать воду и в течение дня свободно ее использовать. Второй способ, но не такой бюджетный - использование систем очистки.

Марганец

Предельно допустимая концентрация марганца (Mn) в питьевой воде - 0,1 мг/л.

Влияние на сантехнику: В результате повышенного содержания марганца в воде на внутренних поверхностях водопроводных труб и водогрейного оборудования начинают накапливаться отложения этого металла, которые, в свою очередь, могут вызывать закупорку и ухудшение процессов теплообмена. Кроме того, такая вода оставляет несмываемые следы на сантехнических устройствах.

Влияние на организм: Как показали последние исследования, употребление воды, чрезмерно обогащенной марганцем, приводит к снижению интеллектуальных способностей у детей. Постоянное употребление питьевой воды, в которой концентрация марганца превышает 0,1 мг/л, может спровоцировать возникновение серьезных заболеваний костной системы. Марганец накапливается в организме человека и его почти невозможно вывести. Марганец проникает в канальцы нервных клеток и тем самым препятствует прохождению нервных импульсов. Также, повышенное содержание марганца в питьевой воде грозит заболеваниями печени, в которой, в основном, и концентрируется этот металл. Кроме того, марганец, употребленный вместе с водой, имеет способность проникать в тонкий кишечник, кости, почки, железы внутренней секреции и даже поражать головной мозг.

Как снизить содержание марганца: специальные системы водоочистки.

Жесткость

Предельно допустимая концентрация жесткости в питьевой воде составляет 7 ммоль.

Влияние на сантехнику: При взаимодействии жесткой воды с моющими веществами (стиральные порошки, мыло, шампуни) появляются «мыльные шлаки», имеющие вид пены. После высыхания эта пена остается в виде налета на коже волосах, белье, сантехнике. Отрицательное действие подобных шлаков на организм человека проявляется тем, что они начинают разрушать естественную жировую пленку, которой покрыта кожа, забивают поры. Влияние на организм: Всемирная Организация Здравоохранения (ВОЗ) не установила какой-либо величины жесткости по показаниям влияния организм человека. Несмотря на то, что исследования выявили обратную зависимость между жесткостью воды и сердечно-сосудистыми болезнями, эти данные являются недостаточным для окончательного заключения. Также не доказано, что слишком мягкая вода способна оказывать отрицательное действие на баланс минеральных веществ в организме. Однако высокая жесткость делает воду хуже, придает ей горьковатый вкус, оказывает негативное действие на органы пищеварения, в организме нарушается водно-солевой баланс, могут возникнуть различные аллергические реакции.

Как снизить содержание жесткости: Вскипятите воду, чтобы избавиться от временной жесткости. Используйте метод вымораживания льда. Его часто применяют при постоянной жесткости воды. Постепенно замораживайте воду. Когда вы обнаружите, что ее осталось примерно 10% от первоначального объема, слейте незамерзшую воду, а лед растопите. Дело в том, что все соли, придающие жесткость, остаются в незамерзшей воде. Поставьте водоочистительные фильтры.

Нитраты, нитриты

Предельно допустимая концентрация нитратов (NO3) и нитритов (NO2) составляет 45 мг/л и 3,0 мг/л соответственно.

Влияние на сантехнику: -

Влияние на организм: Опасны не нитраты, опасны нитриты и продукты распада нитратов - свободные радикалы, которые обладают канцерогенным и мутагенным эффектом. Нитраты превращаются в нитриты при пищеварении и даже в полости рта. Нитриты, попадая в кровь, "убивают" гемоглобин. Гемоглобин - носитель кислорода. "Поврежденный" гемоглобин (метгемоглобин) не способен переносить кислород, что приводит к кислородному голоданию клеток, нарушается работа печени, происходит общее отравление организма. В воде из скважин, расположенных вблизи сельскохозяйственных угодий наблюдается содержание нитратов более 100 мг/л. Такая вода без очистки может стать одним из факторов, оказывающих прямое влияние на продолжительность жизни. Смертельная доза нитратов для человека составляет 8-15 г.

Как снизить содержание нитритов и нитратов: специальные системы водоочистки. Очень важно не стать самим источником нитратов в воде, для этого держите выгребные ямы и септики как можно дальше от скважины (колодца).

Сульфаты

Предельно допустимая концентрация сульфатов в питьевой воде составляет 500 мг/л

Влияние на сантехнику: Сульфаты способны образовывать накипь. При использовании свинцовых труб концентрация сульфатов выше 200 мг/л может привести к вымыванию в воду свинца.

Влияние на организм: Повышенные содержания сульфатов ухудшают органолептические свойства воды и оказывают физиологическое воздействие на организм человека - они обладают слабительными свойствами.

Как снизить содержание: Чтобы избавиться от избытка сульфатов воде необходимо установить систему обратного осмоса.

Хлориды

Предельно допустимая концентрация хлора в питьевой воде составляет 350 мг/л.

Влияние на сантехнику: -

Влияние на организм: влияет на водно - солевой обмен; повышается уровень хлоридов в крови, что приводит к снижению диуреза и перераспределению хлоридов в органах и тканях;· вызывают угнетение желудочной секреции, в результате чего нарушается процесс переваривания пищи;· имеются данные о том, что хлориды оказывают гипертензивный эффект и у людей, страдающих гипертонической болезнью употребление воды с повышенным содержанием хлоридов может вызвать утяжеление течения заболевания;

Как снизить содержание: Отстаивайте воду в открытых сосудах

Сухой остаток или минерализация

Предельно допустимая концентрация сухого остатка в питьевой воде составляет 1000 мг/л.

Влияние на сантехнику: -

Влияние на организм: а) способствует перегреву в жаркую погоду, б) ведет к нарушению утоления жажды, в) изменяет водно-солевой обмен за счёт увеличения гидрофильности тканей, г) усиливает моторную и секреторную желудка и кишечника.

Как снизить содержание: специальные системы водоочистки.

Марганец в небольших количествах содержится во всех организмах и является микроэлементом. Он регулирует процессы образования крови и функции половых желез, а так же контролирует процесс роста.

Как появляется марганец в воде?

Марганец относится к группе тяжелых металлов . В открытую воду он может поступать вместе с талыми и грунтовыми потоками с тех участков земли, которые «подкармливают» марганцесодержащими удобрениями из-за естественного недостатка этого вещества в почве.

Еще одной возможной причиной называют поднятие воды с глубинных слоев из-за тектонических движений, содержащей некоторое количество марганца, в верхние слои и последующее их смешение. Только при наличии большого количества марганца в воде его можно определить органолептически. Такая вода имеет заметный вяжущий привкус и желтоватую окраску .

Норма примесей марганца в воде

Концентрация марганца в организме человека не превышает тысячных долей процента, поэтому обилие его в воде недопустимо . Доза, обладающая токсичными свойствами для человека равняется 40 мг в день . Летальная доза до сих пор не определена. Лишь в некоторых организмах содержание этого вещества больше. К ним можно отнести свеклу (около 0,3%), муравьев (0,5%) и некоторые бактерии (до нескольких процентов).

Но важно отметить, что во врачебной практике не отмечались случаи отравления из-за высокого содержания марганца в пище или воде, ведь этот элемент относят к наименее ядовитым. Обычно негативное влияние марганца проявляется из-за постоянных выбросов на производстве. При этом же врачи утверждают, что разрушающее влияние этого вещества и конкретно марганцесодержащей воды обычно не проявляется сразу. Для развития клинической картины иногда требуется несколько лет из-за постепенного нарастания количества марганца в организме.

Предельно допустимая концентрация марганца в и воде для бытового использования в России, Украине и других странах СНГ составляет 0,1 миллиграмма на литр воды. В некоторых странах Европы требования ужесточены и принуждают подавать воду населению, где концентрация не превышает 0,05 миллиграмм на литр.

Вред

Избыточное содержание мрганца в воде оказывает негативное воздействие на здоровье человека, бытовую технику и коммуникации.

Вред для здоровья человека и животных

  1. Накопление марганца в организме приводит к нарушениям в работе центральной нервной системы . Первые признаки этого: быстрая утомляемость, постоянная сонливость, ухудшение памяти. Связано это с резким изменением концентрации микроэлемента и неспособностью организма подстроиться под него.
  2. Постоянное увеличение количества марганца в организме из-за его поступления с водой может привести к развитию аллергических реакций на совершенно разные вещества.
  3. Из-за свойств, присущих всем тяжелым металлам, марганец может откладываться в организме. Это выражается в мочекаменной болезни, закупоривании сосудов и, как следствии, сердечно-сосудистых заболеваниях,проблемах с печенью и железами внутренней секреции.
  4. Из-за возможности закупоривания проходов и одновременного усиления аллергических реакций марганец так же приводит к проблемам с легкими и различным хроническим заболеваниям, например, бронхиту.
  5. Одну из самых опасных, но пока не рассмотренных проблем представляет собой возможное мутагенное влияние микроэлемента на организм. Конкретных доказательств мутагенным процессам еще нет, но они объясняются перестройкой функций организма, который вынужден подстраиваться под новую концентрацию марганца.
  6. Избыток приводит к заболеваниям костей . Они становятся более хрупкими и ломкими, резко возрастает опасность переломов.
  7. При слишком сильном отравлении марганцем может наблюдаться «марганцевое безумие» , проявляющееся в нарушениях поведения, галлюцинациях, агрессивности и т.д. Но количество марганца в воде, способное вызвать такую реакцию, пока не наблюдалось.

Вред для бытовой техники и коммуникационных сетей

Вред для бытовой техники и коммуникационных сетей не слишком силен и примерно одинаков.

  1. Марганец образует трудно выводимые темно-коричневые или черные пятна на сантехнике , так как осаждается на ее поверхности.
  2. Отложения накапливаются в трубах и со временем забивают их. Избавиться от марганцовых засоров намного сложнее, чем от простого загрязнения труб. Наросты могут так же образовываться и на бытовой технике.
  3. В некоторых случаях марганец придает серый или коричневый цвет одежде . Вывести его можно только специальными средствами.

Опасность марганца заключается в его не до конца изученных свойствах и сложностях с его нахождением в воде. Небольшие концентрации этого вещества не вредны для организма, но постоянные накопление могут нанести ущерб. Именно поэтому допустимые нормы содержания жестко контролируются.

Alex , 28 апреля 2016 .

Задайте свой вопрос по статье

При использовании воды из скважины иногда отмечается появление темных крупинок. Естественно, возникает вопрос о том, может ли это нанести вред здоровью, и что предпринять в этой ситуации.

Что делать, если в воде появились черные или серые крупинки?

Появление заметных крупинок в воде, необычного запаха и изменение цвета является сигналом наличия вредных примесей. Поэтому в первую очередь нужно до минимума снизить количество используемой воды и провести анализ. Сделать его можно в частной лаборатории или санитарной станции. В зависимости от типа анализа результат придется ждать 3-7 дней.

Черно-серые крупинки в воде чаще всего сигнализируют о превышении допустимого уровня марганца в ней. В питьевой воде этот показатель не должен превышать 0,1 мг/л. В подземных источниках этот металл сопутствует железу и по свойствам схож с ним.

Как влияет марганец на организм человека

Для человеческого здоровья превышение концентрации марганца вредно. Помимо черно-серых крупинок показателем повышенного содержания марганца является слабый желтый оттенок воды и неприятный привкус. Причем последний заметен также в чае или кофе, а не только необработанной воде. Основное негативное воздействие водой с повышенным содержанием кальция оказывается на нервную систему. Согласно научным исследованиям, у детей, которые постоянно употребляли марганец в повышенных дозах, отмечается снижение интеллектуальных способностей.

Также вредное воздействие марганцем оказывается и на другие органы. Например, этот элемент перерабатывается и накапливается печенью, что влияет на ее работу. Марганец проникает в кости, кишечник, почки, мозг. Если не предотвратить поступление в организм марганца в повышенных дозах, это в конечном итоге приведет к отравлению. Основными симптомами при этом являются:

  • Упадок сил и апатия;
  • Головокружение и головные боли;
  • Снижение аппетита;
  • Постоянная смена настроения;
  • Боли и судороги в спине.

Также негативному воздействию подвергается система отопления и водопроводные трубы. На их поверхности образуется налет, который затрудняет прохождение потока воды. Со временем налет начинает отслаиваться. Именно они появляются в воде в виде крупиц.

Что делать, если концентрация марганца в воде повышена

Из-за вредного влияния марганца на здоровье человека к водоподготовке важно подходить ответственно. Соответствующее оборудование подбирается с учетом результатов проведенного анализа. Принцип их действия основан на окислении марганца. Благодаря этому он выпадает в осадок, который механическими способами затем удаляется.

Очищаем воду от марганца, фильтры и цены Пермь

Название Мощность м3/ч Гарантия Подбор Цена Цена по акции -30%
Умягчитель WS 0844 0,6 5 лет Бесплатно 28 670 22 054
Умягчитель WS 1044 1,1 5 лет Бесплатно 35 411 27 239
Умягчитель WS 1054 1,5 5 лет Бесплатно 39 536 30 412
Умягчитель WS 12 1,8 5 лет Бесплатно 46 128 35 483
Умягчитель WS 13 2,1 5 лет Бесплатно 51 222 39 401
Умягчитель WS 14 2,8 5 лет Бесплатно 67 822 52 171

Тяжелые металлы — очень опасные токсические вещества. В наши дни, мониторинг уровня разных таких веществ особо важен в промышленных и городских районах.

Хотя все знают, что такое тяжелые металлы , не все знают какие химические элементы всё-таки входят в эту категорию. Есть очень много критерий, по которому, разные учёные определяют тяжелые металлы: токсичность, плотность, атомная масса, биохимические и геохимические циклы, распространение в природе. По одним критериям в число тяжелых металлов входят мышьяк (металлоид) и висмут (хрупкий металл).

Общие факты про тяжелые металлы

Известно более 40 элементов, которые относят к тяжелым металлам. Они имеют атомную массу больше 50 а.е. Как не странно именно эти элементы обладают большой токсичностью даже при малой кумуляции для живых организмов. V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo…Pb, Hg, U, Th…все они входят в эту категорию. Даже при их токсичности, многие из них являются важными микроэлементами , кроме кадмия, ртути, свинца и висмута для которых не нашли биологическую роль.


По другой классификации (а именно Н. Реймерса) тяжелые металлы — это элементы которые имеют плотность больше 8 г/см 3 . Таким образом получится меньше таких элементов: Pb, Zn, Bi, Sn, Cd, Cu, Ni, Co, Sb.

Теоретически, тяжелыми металлами можно назвать всю таблицу элементов Менделеева начиная с ванадия, но исследователи нам доказывают, что это не совсем так. Такая теория вызвана тем, что не все они присутствуют в природе в токсических пределах, да и замешательство в биологических процессах для многих минимальна. Вот почему в эту категорию многие включают только свинец, ртуть, кадмий и мышьяк. Европейская Экономическая Комиссия ООН не согласна с этим мнением и считает что тяжелые металлы это — цинк, мышьяк, селен и сурьма. Тот же Н. Реймерс считает, что удалив редкие и благородные элементы из таблицы Менделеева, остаются тяжелые металлы. Но и это тоже не правило, другие к этому классу добавляют и золото, платину, серебро, вольфрам, железо, марганец. Вот почему я вам говорю, что не всё ещё понятно по этой теме…

Обсуждая про баланс ионов различных веществ в растворе, мы обнаружим, что растворимость таких частиц связанно со многими факторами. Главные факторы солюбилизации являются рН, наличие лигандов в растворе и окислительно-восстановительный потенциал. Они причастны к процессам окисления этих элементов с одной степени окисления к другой, в которой растворимость иона в растворе выше.

В зависимости от природы ионов, в растворе могут происходить различные процессы:

  • гидролиз,
  • комплексообразование с разными лигандами;
  • гидролитическая полимеризация.

Из-за этих процессов, ионы могут переходить в осадок или оставаться стабильными в растворе. От этого зависит и каталитические свойства определённого элемента, и его доступность для живых организмов.

Многие тяжелые металлы образуют с органическими веществами довольно стабильные комплексы. Эти комплексы входят в механизм миграции этих элементов в прудах. Почти все хелатные комплексы тяжелых металлов устойчивы в растворе. Также, комплексы почвенных кислот с солями разных металлов (молибден, медь, уран, алюминий, железо, титан, ванадий) имеют хорошую растворимость в нейтральной, слабощелочной и слабокислой среды. Это факт очень важен, потому что такие комплексы могут продвигаться в растворенном состоянии на большие расстояния. Самые подверженные водные ресурсы — это маломинерализованные и поверхностные водоёмы, где не происходит образование других таких комплексов. Для понимания факторов, которые регулируют уровень химического элемента в реках и озерах, их химическую реакционную способность, биологическую доступность и токсичность, необходимо знать не только валовое содержание, но и долю свободных и связанных форм металла.

В результате миграции тяжелых металлов в металлокомплексы в растворе могут произойти такие последствия:

  1. В первых, увеличивается кумуляция ионов химического элемента за счёт перехода этих из донных отложений в природные растворы;
  2. Во вторых, возникает возможность изменения мембранной проницаемости полученных комплексов в отличие от обычных ионов;
  3. Также, токсичность элемента в комплексной форме может отличаться от обычной ионной формы.

Например, кадмий, ртуть и медь в хелатные формы, имеют меньшую токсичность, чем свободные ионы. Вот почему не правильно говорить о токсичности, биологической доступности, химической реакционной способности только по общему содержанию определённого элемента, при этом, не учитывая долю свободных и связанных форм химического элемента.

Откуда же берутся тяжелые металлы в нашу среду обитания? Причины присутствия таких элементов могут быть сточные воды с разных промышленных объектов занимающийся черной и цветной металлургией, машиностроением, гальванизацией. Некоторые химические элементы входят в состав пестицидов и удобрений и таким образом могут быть источником загрязнения местных прудов.

А если войти в тайны химии, то самым главным виновником повышения уровня растворимых солей тяжелых металлов является кислотные дожди (закисление). Понижение кислотности среды (уменьшение рН) тянет за собою переход тяжелых металлов из малорастворимых соединений (гидроксиды, карбонаты, сульфаты) в более хорошо растворимые (нитраты, гидросульфаты, нитриты, гидрокарбонаты, хлориды) в почвенном растворе.

Ванадий (V)

Надо отметить в первую очередь, что загрязнение этим элементом натуральными способами маловероятна, потому что этот элемент очень рассеян в Земной коре. В природе обнаруживается в асфальтах, битумах, углях, железных рудах. Важным источником загрязнения является нефть.

Содержание ванадия в природных водоёмах

Природные водоёмы содержит ничтожное количество ванадия:

  • в реках — 0,2 — 4,5 мкг/л,
  • в морях (в среднем) — 2 мкг/л.

В процессах перехода ванадия в растворённом состоянии очень важны анионные комплексы (V 10 O 26) 6- и (V 4 O 12) 4- . Также очень важны растворимые ванадиевые комплексы с органическими веществами, типа гумусовых кислот.

Предельно-допустимая концентрация ванадия для водной среды

Ванадий в повышенных дозах очень вреден для человека. Предельно-допустимая концентрация для водной среды (ПДК) составляет 0,1 мг/л, а в рыбохозяйственных прудах, ПДК рыбхоз ещё ниже — 0,001 мг/л.

Висмут (Bi)

Главным образом, висмут может поступать в реки и озера в результате процессов выщелачивания минералов содержащих висмут. Есть и техногенные источники загрязнения этим элементом. Это могут быть предприятия по производству стекла, парфюмерной продукций и фармацевтические фабрики.

Содержание висмута в природных водоёмах

  • Реки и озера содержат меньше микрограмма висмута на литр.
  • А вот подземные воды могут содержать даже 20 мкг/л.
  • В морях висмут как правило не превышает 0,02 мкг/л.

Предельно-допустимая концентрация висмута для водной среды

ПДК висмута для водной среды — 0,1 мг/л.

Железо (Fe)

Железо — химический элемент не редкий, оно содержится во многих минералах и пород и таким образом в природных водоёмах уровень этого элемента повыше других металлов. Оно может происходить в результате процессов выветривания горных пород, разрушения этих пород и растворением. Образуя разные комплексы с органическими веществами из раствора, железо может быть в коллоидальном, растворённом и в взвешенном состояниях. Нельзя не упомнить про антропогенные источники загрязнения железом. Сточные воды с металлургических, металлообрабатывающих, лакокрасочных и текстильных заводов зашкаливают иногда из-за избытка железа.

Количество железа в реках и озерах зависит от химического состава раствора, рН и частично от температуры. Взвешенные формы соединений железа имеют размер более 0,45 мкг. Основные вещества которые входят в состав этих частиц являются взвеси с сорбированными соединениями железа, гидрата оксида железа и других железосодержащих минералов. Более малые частицы, то есть коллоидальные формы железа, рассматриваются совместно с растворенными соединениями железа. Железо в растворённом состоянии состоит из ионов, гидроксокомплексов и комплексов. В зависимости от валентности замечено что Fe(II) мигрирует в ионной форме, а Fe(III) в отсутствии разных комплексов остаётся в растворённом состоянии.

В балансе соединений железа в водном растворе, очень важно и роль процессов окисления, так химического так и биохимического (железобактерии). Эти бактерии ответственны за переход ионов железа Fe(II) в состояние Fe(III). Соединения трехвалентного железа имеют склонность гидролизовать и выпадать в осадок Fe(OH) 3 . Как Fe(II), так и Fe(III) склоны к образованию гидроксокомплексов типа — , + , 3+ , 4+ , + , в зависимости от кислотности раствора. В нормальных условиях в реках и озерах, Fe(III) находятся в связи с разными растворёнными неорганическими и органическими веществами. При рН больше 8, Fe(III) переходит в Fe(OH) 3 . Коллоидные формы соединений железа самые малоизучены.

Содержание железа в природных водоёмах

В реках и озерах уровень железа колеблется на уровне n*0,1 мг/л, но может повыситься вблизи болот до несколько мг/л. В болотах железо концентрируется в форме солей гуматов (соли гуминовых кислот).

Подземные водохранилища с низким рН содержат рекордные количества железа — до нескольких сотен миллиграммов на литр.

Железо — важный микроэлемент и от него зависят разные важные биологические процессы. Оно влияет на интенсивность развития фитопланктона и от него зависит качество микрофлоры в водоёмах.

Уровень железа в реках и озерах имеет сезонный характер. Самые высокие концентрации в водоёмах наблюдаются зимою и летом из-за стагнации вод, а вот весною и осенью заметно снижается уровень этого элемента по причине перемешивания водных масс.

Таким образом, большое количество кислорода ведёт к окислению железа с двухвалентной формы в трехвалентной, формируясь гидроксид железа, который падает в осадок.

Предельно-допустимая концентрация железа для водной среды

Вода с большим количеством железа (больше 1-2 мг/л) характеризуется плохими вкусовыми качествами. Она имеет неприятный вяжущий вкус и непригодна для промышленных целей.

ПДК железа для водной среды — 0,3 мг/л, а в рыбохозяйственных прудах ПДК рыбхоз — 0,1 мг/л.

Кадмий (Cd)

Загрязнение кадмием может возникнуть во время выщелачивания почв, при разложения разных микроорганизмов которые его накапливают, а также из-за миграции из медных и полиметаллических руд.

Человек тоже виноват в загрязнении этим металлом. Сточные воды с разных предприятий занимающеюся рудообогащением, гальваническим, химическим, металлургическим производством могут содержать большие количества соединений кадмия.

Естественные процессы по снижению уровня соединений кадмия являются сорбция, его потребление микроорганизмами и выпадение в осадок малорастворимого карбоната кадмия.

В растворе, кадмий находится, как правило, в форме органо-минеральных и минеральных комплексов. Сорбированные вещества на базе кадмия — важнейшие взвешенные формы этого элемента. Очень важна миграция кадмия в живых организмов (гидробиониты).

Содержание кадмия в природных водоёмах

Уровень кадмия в чистых реках и озерах колеблется на уровне меньше микрограмма на литр, в загрязнённых водах уровень этого элемента доходит до нескольких микрограммов на литр.

Некоторые исследователи считают, что кадмий, в малых количествах, может быть важным для нормального развития животных и человека. Повышенные концентрации кадмия очень опасных для живых организмов.

Предельно-допустимая концентрация кадмия для водной среды

ПДК для водной среды не превышает 1 мкг/л, а в рыбохозяйственных прудах ПДК рыбхоз — меньше 0,5 мкг/л.

Кобальт (Co)

Реки и озера могут загрязниться кобальтом как следствие выщелачивания медных и других руд, из почв во время разложения вымерших организмов (животные и растения), ну и конечно же в результате активности химических, металлургических и металлообрабатывающих предприятии.

Главные формы соединений кобальта находится в растворенном и взвешенном состояниях. Вариации между этими двумя состояниями могут происходить, из-за изменений рН, температуры и состава раствора. В растворённом состоянии, кобальт содержится в виде органических комплексов. Реки и озера имеют характерность, что кобальт представлен двухвалентным катионом. При наличии большого количества окислителей в растворе, кобальт может окисляться до трехвалентного катиона.

Он входит в состав растений и животным, потому что играет важную роль в их развитии. Входит в число основных микроэлементов. Если в почве наблюдается дефицит кобальта, то его уровень в растениях будет меньше обычного и как следствие могут появиться проблемы со здоровьем у животных (возникает риск возникновения малокровия). Этот факт наблюдается особенно в таежно-лесной нечерноземной зоне. Он входит в состав витамина В 12 , регулирует усвоение азотистых веществ, повышает уровень хлорофилла и аскорбиновой кислоты. Без него растения не могут наращивать необходимое количество белка. Как и все тяжелые металлы, он может быть токсичным в больших количествах.

Содержание кобальта в природных водоёмах

  • Уровень кобальта в реках варьирует от несколько микрограммов до миллиграммов на литр.
  • В морях в среднем уровень кадмия — 0,5 мкг/л.

Предельно-допустимая концентрация кобальта для водной среды

ПДК кобальта для водной среды — 0,1 мг/л, а в рыбохозяйственных прудах ПДК рыбхоз — 0,01 мг/л.

Марганец (Mn)

Марганец поступает в реки и озера по таким же механизмам, как и железо. Главным образом, освобождение этого элемента в растворе происходит при выщелачивании минералов и руд, которые содержат марганец (черная охра, браунит, пиролюзит, псиломелан). Также марганец может поступать вследствие разложения разных организмов. Промышленность имеет, думаю, самую большую роль в загрязнении марганцем (сточные воды с шахт, химическая промышленность, металлургия).

Снижение количества усваиваемого металла в растворе происходит, как и в случае с другими металлами при аэробных условиях. Mn(II) окисляется до Mn(IV), вследствие чего выпадает в осадок в форме MnO 2 . Важными факторами при таких процессах считаются температура, количество растворённого кислорода в растворе и рН. Снижение растворённого марганца в растворе может возникнуть при его употреблении водорослями.

Мигрирует марганец в основном в форме взвеси, которые, как правило, говорят о составе окружающих пород. В них он содержится как смесь с другими металлами в виде гидроксидов. Преобладание марганца в коллоидальной и растворенной форме говорят о том что он связан с органическими соединениями образуя комплексы. Стабильные комплексы замечаются с сульфатами и бикарбонатами. С хлором, марганец образует комплексы реже. В отличие от других металлов, он слабее удерживается в комплексах. Трехвалентный марганец образует подобные соединения только при присутствии агрессивных лигандов. Другие ионные формы (Mn 4+ , Mn 7+)менее редки или вовсе не встречаются в обычных условиях в реках и озерах.

Содержание марганца в природных водоёмах

Самыми бедными в марганце считаются моря — 2 мкг/л, в реках содержание его больше — до 160 мкг/л, а вот подземные водохранилища и в этот раз являются рекордсменами — от 100 мкг до несколько мг/л.

Для марганца характерны сезонные колебания концентрации, как и у железа.

Выявлено множество факторов, которые влияют на уровень свободного марганца в растворе: связь рек и озер с подземными водохранилищами, наличие фотосинтезирующих организмов, аэробные условия, разложение биомассы (мертвые организмы и растения).

Немаловажная биохимическая роль этого элемента ведь он входит в группу микроэлементов. Многие процессы при дефиците марганца угнетаются. Он повышает интенсивность фотосинтеза, участвует в метаболизме азота, защищает клетки от негативного воздействия Fe(II) при этом окисляя его в трехвалентную форму.

Предельно-допустимая концентрация марганца для водной среды

ПДК марганца для водоёмов — 0,1 мг/л.

Медь (Cu)

Такой важной роли для живых организмов не имеет ни один микроэлемент! Медь — один из самых востребованных микроэлементов. Он входит в состав многих ферментов. Без него почти ничего не работает в живом организме: нарушается синтез протеинов, витаминов и жиров . Без него растения не могут размножаться. Всё-таки избыточное количество меди вызывает большие интоксикации во всех типов живых организмов.

Уровень меди в природных водоёмах

Хотя медь имеет две ионные формы, чаще всего в растворе встречается Cu(II). Обычно, соединения Cu(I) трудно растворимые в растворе (Cu 2 S, CuCl, Cu 2 O). Могут возникнуть разные акваионны меди при наличии всяких лигандов.

При сегодняшнем высоком употреблении меди в промышленности и сельское хозяйство, этот металл может послужить причиной загрязнения окружающей среды. Химические, металлургические заводы, шахты могут быть источниками сточных вод с большим содержанием меди. Процессы эрозии трубопроводов тоже имеют свои вклад в загрязнении медью. Самыми важными минералами с большим содержанием меди считаются малахит, борнит, халькопирит, халькозин, азурит, бронтантин.

Предельно-допустимая концентрация меди для водной среды

ПДК меди для водной среды считается 0,1 мг/л, в рыбохозяйственных прудах ПДК рыбхоз меди уменьшается до 0,001 мг/л.

Молибден (Mo)

Во время выщелачивания минералов с высоким содержанием молибдена, освобождаются разные соединения молибдена. Высокий уровень молибдена может замечаться в реках и озерах, которые находятся рядом с фабриками по обогащению и предприятиями занимающиеся цветной металлургией. Из-за разных процессов осаждения труднорастворимых соединений, адсорбции на поверхности разных пород, а также употребления водными водорослями и растениями, его количество может заметно уменьшится.

В основном в растворе, молибден может находиться в форме аниона MoO 4 2- . Есть вероятность присутствия молибденоорганических комплексов. Из-за того что при окисления молибденита формируются рыхлые мелкодисперсные соединения, повышается уровень коллоидального молибдена.

Содержание молибдена в природных водоёмах

Уровень молибдена в реках колеблется между 2,1 и 10,6 мкг/л. В морях и океанах его содержание — 10 мкг/л.

При малых концентрациях, молибден помогает нормальному развитию организма (так растительного, как и животного), ведь он входит в категорию микроэлементов. Также он является составной частью разных ферментов как ксантиноксилазы. При недостатке молибдена возникает дефицит этот фермента и таким образом могут проявляться отрицательные эффекты. Избыток этого элемента тоже не приветствуется, потому что нарушается нормальный обмен веществ.

Предельно-допустимая концентрация молибдена для водной среды

ПДК молибдена в поверхностных водоёмах должен не превышать 0,25 мг/л.

Мышьяк (As)

Загрязнены мышьяком в основном районы, которые находятся близко к минеральным рудников с высоким содержанием этого элемента (вольфрамовые, медно-кобальтовые, полиметаллические руды). Очень малое количество мышьяка может произойти при разложении живых организмов. Благодаря водным организмам, он может усваиваться этими. Интенсивное усваивание мышьяка из раствора замечается в период бурного развития планктона.

Важнейшими загрязнителями мышьяком считаются обогатительная промышленность, предприятия по производству пестицидов , красителей, а также сельское хозяйство.

Озера и реки содержат мышьяк в два состояния: во взвешенном и растворённом. Пропорции между этими формами может меняться в зависимости от рН раствора и химической композиции раствора. В растворённом состоянии, мышьяк может быть трехвалентном или пятивалентном, входя в анионные формы.

Уровень мышьяка в природных водоёмах

В реках, как правило, содержание мышьяка очень низкое (на уровне мкг/л), а в морях — в среднем 3 мкг/л. Некоторые минеральные воды могут содержать большие количества мышьяка (до несколько миллиграммов на литр).

Больше всего мышьяка могут, содержат подземные водохранилища — до несколько десяток миллиграммов на литр.

Его соединения очень токсичны для всех животных и для человека. В больших количествах, нарушаются процессы окисления и транспорт кислорода к клеткам.

Предельно-допустимая концентрация мышьяка для водной среды

ПДК мышьяка для водной среды — 50 мкг/л, а в рыбохозяйственных прудах ПДК рыбхоз — тоже 50 мкг/л.

Никель (Ni)

На содержание никеля в озерах и реках влияют местные породы. Если рядом с водоёмом находятся месторождения никелевых и железно-никелевых руд концентрации могут быть и ещё больше нормального. Никель может поступить в озера и реки при разложении растениях и животных. Сине-зеленые водоросли содержат рекордные количества никеля по сравнению с другими растительными организмами. Важные отходные воды с высоким содержанием никеля освобождаются при производстве синтетического каучука, при процессах никелирования. Также никель в больших количествах освобождается во время сжигания угля, нефти.

Высокий рН может послужить причиной осаждения никеля в форме сульфатов, цианидов, карбонатов или гидроксидов. Живые организмы могут снизить уровень подвижного никеля, употребляя его. Важны и процессы адсорбции на поверхности пород.

Вода может содержать никель в растворённой, коллоидальной и взвешенной формах (баланс между этими состояниями зависит от рН среды, температуры и состава воды). Гидроксид железа, карбонат кальция, глина хорошо сорбируют соединения содержащие никель. Растворённый никель находится в виде комплексов с фульвовой и гуминовой кислот, а также с аминокислотами и цианидами. Самой стабильной ионной формой считается Ni 2+ . Ni 3+ , как правило, формируется при большом рН.

В середине 50ых годов никель был внесён в список микроэлементов, потому что он играет важную роль в разных процессах как катализатор. В низких дозах он имеет положительный эффект на кроветворные процессы. Большие дозы всё-таки очень опасны для здоровья, ведь никель — канцерогенный химический элемент и может спровоцировать разные заболевания дыхательной системы. Свободный Ni 2+ более токсичный, чем в форме комплексов (примерно в 2 раза).

Уровень никеля в природных водоёмах

Предельно-допустимая концентрация никеля для водной среды

ПДК никеля для водной среды — 0,1 мг/л, а вот в рыбохозяйственных прудах ПДК рыбхоз — 0,01 мг/л.

Олово (Sn)

Природными источниками олова являются минералы, которые содержат этот элемент (станнин, касситерит). Антропогенными источниками считаются заводы и фабрики по производству разных органических красок и металлургическая отрасль работающая с добавлением олова.

Олово — малотоксичный металл, вот почему употребляя пищу из металлических консервов мы не рискуем своим здоровьем.

Озера и реки содержат меньше микрограмма олова на литр воды. Подземные водохранилища могут содержать и несколько микрограммов олова на литр.

Предельно-допустимая концентрация олова для водной среды

ПДК олова для водной среды — 2 мг/л.

Ртуть (Hg)

Главным образом, повышенный уровень ртути в воде замечается в районах где есть месторождения ртути. Самые частые минералы — ливингстонит, киноварь, метациннабарит. Сточная вода с предприятий по производству разных лекарств, пестицидов, красителей может содержать важные количества ртути. Другим важным источником загрязнения ртутью считаются тепловые электростанции (которые используют как горючее уголь).

Его уровень в растворе уменьшается главным образом за счёт морских животных и растений, которые накапливают и даже концентрировать ртуть! Иногда содержание ртути в морских обитателей поднимается в несколько раз больше чем в морской среде.

Природная вода содержит ртуть в две формы: взвешенную (в виде сорбированных соединений) и растворённую (комплексные, минеральные соединения ртути). В определённых зонах океанов, ртуть может появляться в виде метилртутных комплексов.

Ртуть и его соединения очень токсичны. При больших концентрациях, имеет отрицательное действие на нервную систему, провоцирует изменения в крови, поражает секрецию пищеварительного тракта и двигательную функцию. Очень опасны продукты переработки ртути бактериями. Они могут синтезировать органические вещества на базе ртути, которые во много раз токсичнее неорганических соединений. При употреблении рыбы, соединения ртути могут попасть в наш организм.

Предельно-допустимая концентрация ртути для водной среды

ПДК ртути в обычной воде — 0,5 мкг/л, а в рыбохозяйственных прудах ПДК рыбхоз — меньше 0,1 мкг/л.

Свинец (Pb)

Реки и озера могут загрязняться свинцом натуральным путём при смывании минералов свинца (галенит, англезит, церуссит), так и антропогенным путём (сжигание угля, применение тетраэтилсвинца в топливе, сбросы фабрик по рудообогащению, сточные воды с шахт и металлургических заводов). Осаждение соединений свинца и адсорбция этих веществ на поверхности разных пород являются важнейшими натуральными методами понижения его уровня в растворе. Из биологических факторов, к уменьшению уровня свинца в растворе ведут гидробионты.

Свинец в реках и озерах находится во взвешенной и растворённой форме (минеральные и органоминеральные комплексы). Также свинец находится в виде нерастворимых веществ: сульфаты, карбонаты, сульфиды.

Содержание свинца в природных водоёмах

Про токсичность этого тяжелого металла мы наслышаны. Он — очень опасный даже при малых количествах и может стать причиной интоксикации. Проникновение свинца в организм осуществляется через дыхательную и пищеварительную систему. Его выделение из организма протекает очень медленно, и он способен накапливаться в почках, костях и печени.

Предельно-допустимая концентрация свинца для водной среды

ПДК свинца для водной среды — 0,03 мг/л, а в рыбохозяйственных прудах ПДК рыбхоз — 0,1 мг/л.

Тетраэтилсвинец

Он служит в качестве антидетонатора в моторном топливе. Таким образом, основными источниками загрязнения этим веществом — транспортные средства.

Это соединение — очень токсичное и может накапливаться в организме.

Предельно-допустимая концентрация тетраэтилсвинца для водной среды

Предельно-допустимый уровень этого вещества приближается к нулю.

Тетраэтилсвинец вообще не допускается в составе вод.

Серебро (Ag)

Серебро главным образом попадает в реки и озера из подземных водохранилищах и как следствие сброса сточных вод с предприятий (фотопредприятия, фабрики по обогащению) и рудников. Другим источником серебра могут быть альгицидные и бактерицидные средства.

В растворе, самые важные соединения являются галоидные соли серебра.

Содержание серебра в природных водоёмах

В чистых реках и озерах, содержание серебра — меньше микрограмма на литр, в морях — 0,3 мкг/л. Подземные водохранилища содержат до несколько десяток микрограммов на литр.

Серебро в ионной форме (при определённых концентрациях) имеет бактериостатический и бактерицидный эффект. Для того чтобы можно было стерилизовать воду при помощи серебра, его концентрация должна быть больше 2*10 -11 моль/л. Биологическая роль серебра в организм ещё недостаточно известна.

Предельно-допустимая концентрация серебра для водной среды

Предельно-допустимая серебра для водной среды — 0,05 мг/л.