К щелочным металлам относятся металлы IA группы Периодической системы Д.И. Менделеева – литий (Li), натрий (Na), калий (K), рубидий (Rb), цезий (Cs) и франций (Fr). На внешнем энергетическом уровне щелочных металлов находится один валентный электрон. Электронная конфигурация внешнего энергетического уровня щелочных металлов – ns 1 . В своих соединениях они проявляют единственную степень окисления равную +1. В ОВР являются восстановителями, т.е. отдают электрон.

Физические свойства щелочных металлов

Все щелочные металлы легкие (обладают небольшой плотностью), очень мягкие (за исключением Li легко режутся ножом и могут быть раскатаны в фольгу), имеют низкие температуры кипения и плавления (с ростом заряда ядра атома щелочного металла происходит понижение температуры плавления).

В свободном состоянии Li, Na, K и Rb – серебристо-белые металлы, Cs – металл золотисто-желтого цвета.

Щелочные металлы хранят в запаянных ампулах под слоем керосина или вазелинового масла, поскольку они обладают высокой химической активностью.

Щелочные металлы обладают высокой тепло- и электропроводностью, что обусловлено наличием металлической связи и объемоцентрированной кристаллической решетки

Получение щелочных металлов

Все щелочные металлы возможно получить электролизом расплава их солей, однако на практике таким способом получают только Li и Na, что связано с высокой химической активностью K, Rb, Cs:

2LiCl = 2Li + Cl 2

2NaCl = 2Na + Cl 2

Любой щелочной металл можно получить восстановлением соответствующего галогенида (хлорида или бромида), применяя в качестве восстановителей Ca, Mg или Si. Реакции проводят при нагревании (600 – 900С) и под вакуумом. Уравнение получения щелочных металлов таким способом в общем виде:

2MeCl + Ca = 2Mе + CaCl 2 ,

где Ме – металл.

Известен способ получения лития из его оксида. Реакцию проводят при нагревании до 300°С и под вакуумом:

2Li 2 O + Si + 2CaO = 4Li + Ca 2 SiO 4

Получение калия возможно по реакции между расплавленным гидроксидом калия и жидким натрием. Реакцию проводят при нагревании до 440°С:

KOH + Na = K + NaOH

Химические свойства щелочных металлов

Все щелочные металлы активно взаимодействуют с водой образуя гидроксиды. Из-за высокой химической активности щелочных металлов протекание реакции взаимодействия с водой может сопровождаться взрывом. Наиболее спокойно с водой реагирует литий. Уравнение реакции в общем виде:

2Me + H 2 O = 2MeOH + H 2

где Ме – металл.

Щелочные металлы взаимодействуют с кислородом воздуха образую ряд различных соединений – оксиды (Li), пероксиды (Na), надпероксиды (K, Rb, Cs):

4Li + O 2 = 2Li 2 O

2Na + O 2 =Na 2 O 2

Все щелочные металлы при нагревании реагируют с неметаллами (галогенами, азотом, серой, фосфором, водородом и др.). Например:

2Na + Cl 2 =2NaCl

6Li + N 2 = 2Li 3 N

2Li +2C = Li 2 C 2

2Na + H 2 = 2NaH

Щелочные металлы способны взаимодействовать со сложными веществами (растворы кислот, аммиак, соли). Так, при взаимодействии щелочных металлов с аммиаком происходит образование амидов:

2Li + 2NH 3 = 2LiNH 2 + H 2

Взаимодействие щелочных металлов с солями происходит по следующему принципу –вытесняют менее активные металлы (см. ряд активности металлов) из их солей:

3Na + AlCl 3 = 3NaCl + Al

Взаимодействие щелочных металлов с кислотами неоднозначно, поскольку при протекании таких реакций металл первоначально будет реагировать с водой раствора кислоты, а образующаяся в результате этого взаимодействия щелочь будет реагировать с кислотой.

Щелочные металлы реагируют с органическими веществами, такими, как спирты, фенолы, карбоновые кислоты:

2Na + 2C 2 H 5 OH = 2C 2 H 5 ONa + H 2

2K + 2C 6 H 5 OH = 2C 6 H 5 OK + H 2

2Na + 2CH 3 COOH = 2CH 3 COONa + H 2

Качественные реакции

Качественной реакцией на щелочные металлы является окрашивание пламени их катионами: Li + окрашивает пламя в красный цвет, Na + — в желтый, а K + , Rb + , Cs + — в фиолетовый.

Примеры решения задач

ПРИМЕР 1


Соль19 Соль


1. Металл + Неметалл. В данное взаимодействие не вступают инертные газы. Чем выше электроотрицательность неметалла, тем с большим числом металлов он будет реагировать. Например, фтор реагирует со всеми металлами, а водород – только с активными. Чем левее в ряду активности металлов находится металл, тем с большим числом неметаллов он может реагировать. Например, золото реагирует только с фтором, литий – со всеми неметаллами.

2. Неметалл + неметалл. При этом более электроотрицательный неметалл выступает окислителем, менее ЭО – восстановителем. Неметаллы с близкой электроотрицательностью плохо взаимодействуют между собой, например, взаимодействие фосфора с водородом и кремния с водородом практически не возможно, так как равновесие этих реакций смещено в сторону образования простых веществ. Не реагируют с неметаллами гелий, неон и аргон, остальные инертные газы в жестких условиях могут реагировать с фтором. Не взаимодействуют кислород с хлором, бромом и йодом. Со фтором кислород может реагировать при низких температурах.

3. Металл + кислотный оксид. Металл восстанавливает неметалл из оксида. После этого избыток металла может реагировать с получившимся неметаллом. Например:

2Mg + SiO 2 = 2MgO + Si (при недостатке магния)

2Mg + SiO 2 = 2MgO + Mg 2 Si (при избытке магния)

4. Металл + кислота. Металлы, стоящие в ряду напряжений левее водорода, реагируют с кислотами с выделением водорода.

Исключение составляют кислоты – окислители (серная концентрированная и любая азотная), которые могут реагировать с металлами, стоящими в ряду напряжений правее водорода, в реакциях не выделяется водород, а получается вода и продукт восстановления кислоты.

Нужно обратить внимание на то, что при взаимодействии металла с избытком многоосновной кислоты может получиться кислая соль: Mg +2H 3 PO 4 = Mg(H 2 PO 4) 2 + H 2 .

Если продуктом взаимодействия кислоты и металла является нерастворимая соль, то металл пассивируется, так как поверхность металла защищается нерастворимой солью от действия кислоты. Например, действие разбавленной серной кислоты на свинец, барий или кальций.

5. Металл + соль. В растворе в данную реакцию вступают металл, стоящий в ряду напряжений правее магния, включая сам магний, но левее металла соли. Если металл активнее магния, то он реагирует не с солью, а с водой с образованием щелочи, которая в дальнейшем реагирует с солью. При этом исходная соль и получающаяся соль должны быть растворимыми. Нерастворимый продукт пассивирует металл.



Однако, из этого правила бывают исключения:

2FeCl 3 + Cu = CuCl 2 + 2FeCl 2 ;

2FeCl 3 + Fe = 3FeCl 2 . Так как железо имеет промежуточную степень окисления, то его соль в высшей степени окисления легко восстанавливается до соли в промежуточной степени окисления, окисляя даже менее активные металлы.

В расплавах ряд напряжений металлов не действует. Определить, возможна ли реакция между солью и металлом, можно только с помощью термодинамических расчетов. Например, натрий может вытеснить калий из расплава хлорида калия, так как калий более летучий: Na + KCl = NaCl + K (эту реакцию определяет энтропийный фактор). С другой стороны алюминий получали вытеснением из хлорида натрием: 3Na + AlCl 3 = 3NaCl + Al. Этот процесс экзотермический, его определяет энтальпийный фактор.

Возможен вариант, что соль при нагревании разлагается, и продукты ее разложения могут реагировать с металлом, например нитрат алюминия и железо. Нитрат алюминия разлагается при нагревании на оксид алюминия, оксид азота (IV) и кислород, кислород и оксид азота будут окислять железо:

10Fe + 2Al(NO 3) 3 = 5Fe 2 O 3 + Al 2 O 3 + 3N 2

6. Металл + основный оксид. Также, как и в расплавах солей, возможность этих реакций определяется термодинамически. В качестве восстановителей часто используют алюминий, магний и натрий. Например: 8Al + 3Fe 3 O 4 = 4Al 2 O 3 + 9Fe реакция экзотермическая, энтальпийный фактор);2 Al + 3Rb 2 O = 6Rb + Al 2 O 3 (рубидий летучий, энтальпийный фактор).

7. Неметалл + основный оксид. Здесь возможно два варианта: 1) неметалл – восстановитель (водород, углерод): CuO + H 2 = Cu + H 2 O; 2) неметалл – окислитель (кислород, озон, галогены): 4FeO + O 2 = 2Fe 2 O 3 .

8. Неметалл + основание. Как правило, реакция идет между неметаллом и щелочью.Не все неметаллы могут реагировать с щелочами: нужно помнить, что в это взаимодействие вступают галогены (по-разному в зависимости от температуры), сера (при нагревании), кремний, фосфор.

2KOH + Cl 2 = KClO + KCl + H 2 O (на холоде)

6KOH + 3Cl 2 = KClO 3 + 5KCl + 3H 2 O (в горячем растворе)

6KOH + 3S = K 2 SO 3 + 2K 2 S + 3H 2 O

2KOH + Si + H 2 O = K 2 SiO 3 + 2H 2

3KOH + 4P + 3H 2 O = PH 3 + 3KPH 2 O 2

9. Неметалл+ кислотный оксид. Здесь также возможно два варианта:

1) неметалл – восстановитель (водород, углерод):

СО 2 + С = 2СО;

2NO 2 + 4H 2 = 4H 2 O + N 2 ;

SiO 2 + C = CO 2 + Si. Если получившийся неметалл может реагировать с металлом, использованным в качестве восстановителя, то реакция пойдет дальше (при избытке углерода) SiO 2 + 2C = CO 2 + SiС

2) неметалл – окислитель (кислород, озон, галогены):

2СO + O 2 = 2СО 2 .

СO + Cl 2 = СОCl 2 .

2NO + O 2 = 2NО 2 .

10. Кислотный оксид + основный оксид . Реакция идёт, если получающаяся соль в принципе существует. Например, оксид алюминия может реагировать с серным ангидридом с образованием сульфата алюминия, но не может реагировать с углекислым газом, так как соответствующей соли не существует.

11. Вода + основный оксид . Реакция возможна, если образуется щелочь, то есть растворимое основание (или мало растворимое, в случае кальция). Если основание нерастворимое или мало растворимое, то идёт обратная реакция разложения основания на оксид и воду.

12. Основный оксид + кислота . Реакция возможна, если образующаяся соль существует. Если получающаяся соль нерастворима, то реакция может пассивироваться из-за перекрытия доступа кислоты к поверхности оксида. В случае избытка многоосновной кислоты возможно образование кислой соли.

13. Кислотный оксид + основание . Как правило, реакция идет между щелочью и кислотным оксидом. Если кислотный оксид соответствует многоосновной кислоте, может получиться кислая соль: CO 2 + KOH = KHCO 3 .

Кислотные оксиды, соответствующие сильным кислотам, могут реагировать и с нерастворимыми основаниями.

Иногда с нерастворимыми основаниями реагируют оксиды, соответствующие слабым кислотам, при этом может получиться средняя или основная соль (как правило, получается менее растворимое вещество): 2Mg(OH) 2 + CO 2 = (MgOH) 2 CO 3 + H 2 O.

14. Кислотный оксид + соль. Реакция может идти в расплаве и в растворе. В расплаве менее летучий оксид вытесняет из соли более летучий. В растворе оксид, соответствующий более сильной кислоте, вытесняет оксид, соответствующий более слабой кислоте. Например, Na 2 CO 3 + SiO 2 = Na 2 SiO 3 + CO 2 , в прямом направлении эта реакция идет в расплаве, углекислый газ более летучий, чем оксид кремния; в обратном направлении реакция идет в растворе, угольная кислота сильнее кремниевой, к тому же оксид кремния выпадает в осадок.

Возможно соединение кислотного оксида с собственной солью, например, из хромата можно получить дихромат, и сульфата – дисульфат, из сульфита – дисульфит:

Na 2 SO 3 + SO 2 = Na 2 S 2 O 5

Для этого нужно взять кристаллическую соль и чистый оксид, или насыщенный раствор соли и избыток кислотного оксида.

В растворе соли могут реагировать с собственными кислотными оксидами с образованием кислых солей: Na 2 SO 3 + H 2 O + SO 2 = 2NaHSO 3

15. Вода + кислотный оксид . Реакция возможна, если образуется растворимая или мало растворимая кислота. Если кислота нерастворимая или мало растворимая то идёт обратная реакция разложения кислоты на оксид и воду. Например, для серной кислоты характерна реакция получения из оксида и воды, реакция разложения практически не идёт, кремниевую кислоту нельзя получить из воды и оксида, но она легко разлагается на эти составляющие, а вот угольная и сернистая кислоты могут участвовать как в прямых, так и обратных реакциях.

16. Основание + кислота. Реакция идет, если хотя бы одно из реагирующих веществ растворимо. В зависимости от соотношения реагентов могут получаться средние, кислые и основные соли.

17. Основание + соль. Реакция идет, если оба исходные вещества растворимы, а в качестве продукта получается хотя бы один неэлектролит или слабый электролит (осадок, газ, вода).

18. Соль + кислота. Как правило,реакция идет, если оба исходные вещества растворимы, а в качестве продукта получается хотя бы один неэлектролит или слабый электролит (осадок, газ, вода).

Сильная кислота может реагировать с нерастворимыми солями слабых кислот (карбонатами, сульфидами, сульфитами, нитритами), при этом выделяется газообразный продукт.

Реакции между концентрированными кислотами и кристаллическими солями возможны, если при этом получается более летучая кислота: например, хлороводород можно получить действием концентрированной серной кислоты на кристаллический хлорид натрия, бромоводород и йодоводород – действием ортофосфорной кислоты на соответствующие соли. Можно действовать кислотой на собственную соль для получения кислой соли, например: BaSO 4 + H 2 SO 4 = Ba(HSO 4) 2 .

19. Соль + соль. Как правило,реакция идет, если оба исходные вещества растворимы, а в качестве продукта получается хотя бы один неэлектролит или слабый электролит.

Особо обратим внимание на те случаи, когда образуется соль, которая в таблице растворимости показана прочерком. Здесь возможны 2 варианта:

1) соль не существует, потому что необратимо гидролизуется . Это большинство карбонатов, сульфитов, сульфидов, силикатов трехвалентных металлов, а так же некоторые соли двухвалентных металлов и аммония. Соли трехвалентных металлов гидролизуются до соответствующего основания и кислоты, а соли двухвалентных металлов – до менее растворимых основных солей.

Рассмотрим примеры:

2FeCl 3 + 3Na 2 CO 3 = Fe 2 (CO 3) 3 + 6NaCl (1)

Fe 2 (CO 3) 3 + 6H 2 O = 2Fe(OH) 3 + 3H 2 CO 3

H 2 CO 3 разлагается на воду и углекислый газ, вода в левой и правой части сокращается и получается: Fe 2 (CO 3) 3 + 3H 2 O = 2Fe(OH) 3 + 3CO 2 (2)

Если теперь объединить (1) и (2) уравнения и сократить карбонат железа, мы получим суммарное уравнение, отражающее взаимодействие хлорида железа (III) и карбоната натрия: 2FeCl 3 + 3Na 2 CO 3 + 3H 2 O = 2Fe(OH) 3 + 3CO 2 + 6NaCl

CuSO 4 + Na 2 CO 3 = CuCO 3 + Na 2 SO 4 (1)

Подчеркнутая соль не существует из-за необратимого гидролиза:

2CuCO 3 + H 2 O = (CuOH) 2 CO 3 +CO 2 (2)

Если теперь объединить (1) и (2) уравнения и сократить карбонат меди, мы получим суммарное уравнение, отражающее взаимодействие сульфата (II) и карбоната натрия:

2CuSO 4 + 2Na 2 CO 3 + H 2 O = (CuOH) 2 CO 3 + CO 2 + 2Na 2 SO 4

2) Соль не существует за счёт внутримолекулярного окисления-восстановления , таким солям относятся Fe 2 S 3 , FeI 3 , CuI 2 . Как только они получаются, тут же разлагаются: Fe 2 S 3 = 2FeS+ S; 2FeI 3 = 2FeI 2 +I 2 ; 2CuI 2 = 2CuI + I 2

Например; FeCl 3 + 3KI = FeI 3 + 3KCl (1),

но вместо FeI 3 нужно записать продукты его разложения: FeI 2 +I 2.

Тогда получится: 2FeCl 3 + 6KI = 2FeI 2 +I 2 + 6KCl

Это не единственный вариант записи данной реакции, если йодид был в недостатке, то может получиться йод и хлорид железа (II):

2FeCl 3 + 2KI = 2FeCl 2 +I 2 + 2KCl

В предложенной схеме ничего не сказано про амфотерные соединения и соответствующие им простые вещества. На них мы обратим особое внимание. Итак, амфотерный оксид в данной схеме может занять место и кислотного и основного оксидов, амфотерный гидроксид – место кислоты и основания. Нужно помнить, что, выступая в качестве кислотных, амфотерные оксиды и гидроксиды образуют в безводной среде обычные соли, а в растворах – комплексные соли:

Al 2 O 3 + 2NaOH = 2NaAlO 2 + H 2 O (сплавление)

Al 2 O 3 + 2NaOH + 3H 2 O = 2Na (в растворе)

Простые вещества, соответствующие амфотерным оксидам и гидроксидам, реагируют с растворами щелочей с образованием комплексных солей и выделением водорода: 2Al + 2NaOH + 6H 2 O = 2Na + 3Н 2

ЗАДАНИЕ

Обсудите возможность взаимодействия… Это значит, что Вы должны решить:

1) возможна ли реакция;

2) если возможна, то при каких условиях (в растворе, в расплаве, при нагревании и т.п.), если не возможна, то почему;

3) могут ли получиться разные продукты при разных (каких) условиях.

После этого Вы должны записать все возможные реакции.

Например: 1. обсудите возможность взаимодействия магния с нитратом калия.

1) Реакция возможна

2) Она может происходить в расплаве (при нагревании)

3) В расплаве реакция возможна, так как нитрат разлагается с выделением кислорода, который окисляет магний.

KNO 3 + Mg = KNO 2 + MgO

2. обсудите возможность взаимодействия серной кислоты с хлоридом натрия.

1) Реакция возможна

2) Она может происходит между концентрированной кислотой и кристаллической солью

3) В качестве продукта может получаться сульфат натрия и гидросульфат натрия (в избытке кислоты, при нагревании)

H 2 SO 4 + NaCl = NaHSO 4 + HCl

H 2 SO 4 + 2NaCl = Na 2 SO 4 + 2HCl

Обсудите возможность протекания реакции между:

1. Ортофосфорной кислотой и гидроксидом калия;

2. Оксидом цинка и гидроксидом натрия;

3. Сульфитом калия и сульфатом железа (III);

4. Хлоридом меди (II) и йодидом калия;

5. Карбонатом кальция и оксидом алюминия;

6. Углекислым газа и карбонатом натрия;

7. Хлоридом железа (III) и сероводородом;

8. Магнием и сернистым газом;

9. Дихроматом калия и серной кислотой;

10. Натрием и серой.

Проведем небольшой анализ примеров С2



Задание Осуществите химические превращения Na→Na 2 O→NaOH→Na 2 SO 4
Решение 4Na + O 2 →2Na 2 O

Нам надо знать, что из неметаллов, упоминаемых в школьном курсе:

C, N 2 , O 2 – не реагируют с щелочами

Si, S, P, Cl 2 , Br 2 , I 2 , F 2 – реагируют:

Si + 2KOH + H 2 O = K 2 SiO 3 + 2H 2 ,
3S + 6KOH = 2K 2 S + K 2 SO 3 + 3H 2 O,
Cl 2 + 2KOH (холодный)= KCl + KClO + H 2 O,
3Cl 2 + 6KOH (горячий) = 5KCl + KClO 3 + 3H 2 O

(аналогично бром и иод)

4P + 3NaOH + 3H 2 O = 3NaH 2 PO 2 + PH 3

Органическая химия

Тривиальные названия

Надо знать, какие органические вещества соответствуют названиям:

изопрен, дивинил, винилацетилен, толуол, ксилол, стирол, кумол, этиленгликоль, глицерин, формальдегид, уксусный альдегид, пропионовый альдегид, ацетон, первые шесть предельных одноосновных кислот (муравьиная, уксусная, пропионовая, масляная, валериановая, капроновая), акриловая кислота, стеариновая кислота, пальмитиновая кислота, олеиновая кислота, линолевая кислота, щавелевая кислота, бензойная кислота, анилин, глицин, аланин. Не путайте пропионовую кислоту с пропеновой!! Соли важнейших кислот: муравьиной – формиаты, уксусной – ацетаты, пропионовой – пропионаты, масляной – бутираты, щавелевой – оксалаты. Радикал –CH=CH 2 называется винил!!

Заодно и некоторые неорганические тривиальные названия:

Поваренная соль (NaCl), негашеная известь (CaO), гашеная известь (Ca(OH) 2), известковая вода (раствор Ca(OH) 2), известняк (CaCO 3), кварц (он же кремнезем или диоксид кремния – SiO 2), углекислый газ (CO 2), угарный газ (CO), сернистый газ (SO 2), бурый газ (NO 2), питьевая или пищевая сода (NaHCO 3), кальцинированная сода (Na 2 CO 3), аммиак (NH 3), фосфин (PH 3), силан (SiH 4), пирит (FeS 2), олеум (раствор SO 3 в концентрированной H 2 SO 4), медный купорос (CuSO 4 ∙5H 2 O).

Некоторые редкие реакции

1) Образование винилацетилена :

2) Реакция прямого окисления этилена в уксусный альдегид :

Эта реакция коварна тем, что мы хорошо знаем, как ацетилен превращается в альдегид (реакция Кучерова), а если в цепочке встретится превращение этилен → альдегид, то это может нас поставить в тупик. Так вот, имеется в виду эта реакция!

3) Реакция прямого окисления бутана в уксусную кислоту:

Эта реакция лежит в основе промышленного производства уксусной кислоты.

4) Реакция Лебедева:

Отличия фенолов от спиртов

Огромное количество ошибок в таких заданиях!!

1) Следует помнить, что фенолы более кислотны, чем спирты (связь О-Н в них более полярна). Поэтому спирты не реагируют с щелочью, а фенолы реагируют и с щелочью, и некоторыми солями (карбонаты, гидрокарбонаты).

Например:

Задача 10.1

Какие из этих веществ реагируют с литием:

а) этиленгликоль, б) метанол, в) фенол, г) кумол, д) глицерин.

Задача 10.2

Какие из этих веществ реагируют с гидроксидом калия:

а) этиленгликоль, б) стирол, в) фенол, г) этанол, д) глицерин.

Задача 10.3

Какие из этих веществ реагируют с гидрокарбонатом цезия:

а) этиленгликоль, б) толуол, в) пропанол-1, г) фенол, д) глицерин.

2) Следует помнить, что спирты реагируют с галогеноводородами (эта реакция идет по связи С-О), а фенолы нет (в них связь С-О из-за эффекта сопряжения малоподвижна).

Дисахариды

Основные дисахариды: сахароза, лактоза и мальтоза имеют одинаковую формулу C 12 H 22 O 11 .

О них следует помнить:

1) что они способны гидролизоваться на те моносахариды, из которых состоят: сахароза – на глюкозу и фруктозу, лактоза – на глюкозу и галактозу, мальтоза – на две глюкозы.

2) что лактоза и мальтоза обладают альдегидной функцией, то есть являются восстанавливающими сахарами (в частности, дают реакции «серебряного» и «медного» зеркала), а сахароза – невосстанавливающий дисахарид, не имеет альдегидной функции.

Механизмы реакций

Будем надеяться, что достаточно следующих знаний:

1) для алканов (в том числе в боковых цепях аренов, если эти цепи предельные) характерны реакции свободнорадикального замещения (с галогенами), которые идут по радикальному механизму (инициирование цепи – образование свободных радикалов, развитие цепи, обрыв цепи на стенках сосуда или при соударении радикалов);

2) для алкенов, алкинов, аренов характерны реакции электрофильного присоединения , которые идут по ионному механизму (через образование пи-комплекса и карбокатиона ).

Особенности бензола

1. Бензол в отличие от других аренов не окисляется перманганатом калия.

2. Бензол и его гомологи способны вступать в реакцию присоединения с водородом. Но только бензол способен также вступать в реакцию присоединения с хлором (только бензол и только с хлором!). При этом все арены способны вступать в реакцию замещения с галогенами.

Реакция Зинина

Восстановление нитробензола (или аналогичных ему соединений) в анилин (или другие ароматические амины). Эта реакция в одном из ее видов почти обязательно встретится!

Вариант 1 – восстановление молекулярным водородом:

C 6 H 5 NO 2 + 3H 2 → C 6 H 5 NH 2 +2H 2 O

Вариант 2 – восстановление водородом, полученным при реакции железа (цинка) с соляной кислотой:

C 6 H 5 NO 2 + 3Fe + 7HCl → C 6 H 5 NH 3 Cl +3FeCl 2 + 2H 2 O

Вариант 3 – восстановление водородом, полученным при реакции алюминия с щелочью:

C 6 H 5 NO 2 + 2Al + 2NaOH + 4H 2 O → C 6 H 5 NH 2 +2Na

Свойства аминов

Почему-то свойства аминов запоминаются хуже всего. Возможно, это связано с тем, что амины изучаются в курсе органической химии последними, и их свойства не удается повторить, изучая другие классы веществ. Поэтому рецепт такой: просто выучить все свойства аминов, аминокислот и белков.