1. Гладкая (без трения) плоскость или поверхность. Такие связи препятствуют перемещениям тела только в направлении общей нормали в точке касания, вдоль которой и будет направлена соответствующая реакция. Поэтому реакция гладкой плоской опоры перпендикулярна этой опоре (реакция на рис. 12,а); реакция гладкой стенки перпендикулярна этой стенке рис. 12, б); реакция гладкой поверхности направлена по нормали к этой поверхности, проведенной в точке касания на рис. 12, в).

2. Острый выступ. В этом случае можно считать, что опирается сам выступ, а опорой служит рассматриваемое тело. Это приводит к случаю 1 и выводу, что реакция гладкого выступа направлена по нормали к поверхности опирающегося тела (сила на рис. 12, в).

3. Гибкая связь (невесомые нить, трос, цепь и т.п.). Соответствующая реакция направлена вдоль связи от точки крепления нити к точке подвеса (сила на рис. 11,г, сила на рис. 12, б).

4. Невесомый прямолинейный стержень с шарнирами на концах. Реакция направлена вдоль стержня. Поскольку стержень может быть как сжат, так и растянут, реакция может иметь направление как к точке подвеса стержня, так и от точки подвеса (реакции и на рис. 13, а).

5. Невесомый коленчатый или криволинейный стержень. Реакция направлена вдоль прямой, проходящей через центры концевых шарниров (сила 53 на рис. 13, а; сила S на рис. 13, б).

6. Подвижная шарнирная опора. Реакция направлена перпендикулярно плоскости опоры (плоскости катания) (рис. 14, а, б).

7. Цилиндрический шарнир (рис. 15, а), радиальный подшипник (рис. 15, б). Реакция проходит через центр шарнира (центр срединного сечения подшипника) и лежит в плоскости, перпендикулярной оси шарнира (подшипника).

Она эквивалентна двум неизвестным по модулю силам - составляющим этой реакции вдоль соответствующих координатных осей (силы на рис. 15,а; и на рис. 15, б). (Разъяснения по этому поводу см. также в примере на стр. 16).

8. Сферический шарнир (рис. 16, а), подпятник (или радиально-упорный подшипник) (рис. 16, б). Реакция состоит из трех неизвестных по модулю сил - составляющих реакции вдоль осей пространственной системы координат.

9. Жесткая заделка (рис. 17). При действии на тело плоской системы сил полная реакция заделки складывается из силы с составляющими ХА и УА, и пары сил с моментом М, расположенных в той же плоскости, что и действующие силы.

10. Скользящая заделка (рис. 18). В случае плоской системы сил и отсутствия трения реакция состоит из силы N и пары сил с моментом М, расположенных в одной плоскости с действующими силами. Сила N перпендикулярна к направлению скольжения.

Вопросы для самопроверки

1. Что называется абсолютно твердым телом, материальной точкой?

2. Укажите элементы силы. Какими способами можно задать силу?

3. Что называется векторным моментом силы относительно точки Что такое алгебраический момент силы?

4. В каком случае момент силы относительно точки равен нулю?

5. Что называется системой сил? Какие системы сил называются эквивалентными?

6. Что называется равнодействующей системы сил?

7. Дайте определение несвободного твердого тела, связи, реакции связи?

8. Можно ли несвободное тело рассматривать как свободное?

9. На какие две группы делятся силы, действующие на несвободное твердое тело?

Лекция 1

ВВЕДЕНИЕ. ОСНОВНЫЕ ПОНЯТИЯ СТАТИКИ

    Предмет механики.

    Основные понятия и аксиомы статики.

    Связи и реакции связей.

Предмет механики

Механика  это наука, изучающая основные законы механического движения, т.е. законы изменения взаимного расположения материальных тел или частиц в сплошной среде с течением времени. Содержанием курса теоретической механики в техническом вузе является изучение равновесия и движения абсолютно твердых тел, материальных точек и их систем. Теоретическая механика является базой для многих обще-профессиональных дисциплин (сопротивление материалов, детали машин, теория машин и механизмов и др.), а также имеет самостоятельное мировоззренческое и методологическое значение. Иллюстрирует научный метод познания закономерностей окружающего нас мира – от наблюдения к математической модели, её анализ, получение решений и их применение в практической деятельности.

Курс теоретической механики традиционно делится на три части:

Статика  изучает правила эквивалентного преобразования и условия равновесия систем сил.

Кинематика  рассматривает движение тел с геометрической стороны, без учета сил, вызывающих это движение.

Динамика  изучает движение тел в связи с действующими на них силами.

Основные задачи статики:

    Изучение методов преобразования одних систем сил в другие, эквивалентные данным.

    Установление условий равновесия систем сил.

Основные понятия и аксиомы статики

Сила  мера механического воздействия одного тела на другое. Физическая природа сил в механике не рассматривается.

Сила задается модулем, направлением и точкой приложения. Обозначается большими буквами латинского алфавита:
 модуль силы. Анали-

тически силу можно задать ее проекциями на оси координат: , , , а направление в пространстве  направляющими косинусами:
,
,
.

Совокупность нескольких сил, действующих на твердое тело, называется системой сил . Две системы сил эквивалентны () между собой, если, не нарушая состояния тела, одну систему сил можно заменить другой.

Сила, эквивалентная данной системе сил, называется равнодействующей :
. Не всегда систему сил можно заменить равнодействующей.

Систему сил, приложенную к свободному твердому телу, находящемуся в равновесии, и не выводящую его из этого состояния, называют уравновешенной системой сил
~ 0.

Абсолютно твердое тело  тело, у которого расстояние между любыми двумя точками остается неизменным.

Аксиомы:


Следствие : Точку приложения силы можно переносить вдоль линии действия силы.

Доказательство:

К телу в точке А приложена сила . Добавим в точке В систему сил,
:
.
, но
, следовательно,
. Следствие доказано.

    Две силы, приложенные к телу в одной точке, имеют равнодействующую, проходящую через эту точку и равную их геометрической сумме.

,

,

Из этой аксиомы следует, что силу можно разложить на любое количество составляющих сил по заранее выбранным направлениям.

    Силы взаимодействия двух тел равны по модулю и направлены по одной прямой в противоположные стороны.

    Равновесие деформируемого тела не нарушится, если это тело отвердеет.

Иными словами, необходимые условия равновесия деформируемых и абсолютно твердых тел совпадают, что позволяет применять получаемые результаты для реальных тел и конструкций, не являющихся абсолютно твердыми.

Связи и реакции связей

Тело называется свободным , если его перемещение в пространстве ничем не ограничено. В противном случае тело называется несвободным , а тела, ограничивающие перемещения данного тела,  связями . Силы, с которыми связи действуют на данное тело, называются реакциями связей .

Основные виды связей и их реакции:

Реакция гладкой поверхности направлена по нормали к этой поверхности (перпендикулярна общей касательной).

Реакция перпендикулярна опирающейся поверхности.

    Идеальная нить (гибкая, невесомая, нерастяжимая):

Примеры: моделирует трос, канат, цепь, ремень,…

Реакция идеальной нити направлена по нити к точке подвеса.

    Идеальный стержень (жесткий, невесомый стержень, на концах которого шарниры):

Реакция связи направлена по стержню.

В отличие от нити стержень может работать и на сжатие.

    Цилиндрический шарнир:

Такая связь позволяет телу перемещаться вдоль оси, поворачиваться вокруг оси шарнира, но не позволяет точке закрепления перемещаться в плоскости, перпендикулярной оси шарнира. Реакция лежит в плоскости, перпендикулярной оси шарнира, и проходит через нее. Положение этой реакции не определено, но она может быть представлена двумя взаимно перпендикулярными составляющими.

    Сферический шарнир:

Такая связь не дает точке закрепления тела перемещаться ни в одном из направлений. Положение реакции не определено, но она может быть представлена тремя взаимно перпендикулярными составляющими.

    Подпятник:

Реакция данной связи задается аналогично предыдущему случаю.

    Жесткая заделка:

Такая связь препятствует перемещению и повороту вокруг точки закрепления. Контакт тела со связью осуществляется по поверхности. Имеем распределенную систему сил реакции, которая, как будет показано, может быть заменена одной силой и парой сил.

Аксиома освобождаемости от связей:

Литература: [1 , §13];

[2 , §13];

[ 3 , п.1.11.4].

Всякое свободное тело в пространстве имеет шесть степеней свободы: оно может перемещаться вдоль трех осей и вращаться относительно этих осей. В свободном состоянии тела находятся редко, в большинстве случаев их перемещение ограничено связями. Связями называют ограничения, исключающие возможность движения тела в определенном направлении. Если па закрепленное тело действуют активные силы, то в связях возникают реактивные силы или реакции, дополняющие систему активных сил до равновесной. Совокупность активных и реактивных уравновешенных сил определяет напряженное состояние тела и его деформацию.

Реакции связей находят с помощью уравнений равновесия. При этом решение ведется по следующему плану:

  • выявляют внешние активные силы, приложенные к выделенному телу или группе тел;
  • выделенный объект (тело) освобождают от связей и вместо них прикладывают силы реакции связей;
  • выбрав координатные оси, составляют уравнения равновесия и, решив их, находят силы реакции связей.

Для пространственной системы сил можно составить шесть уравнений равновесия (13.7). С помощью этих уравнений определяются шесть неизвестных реакций.

Задачи, решаемые только с помощью уравнений равновесия статики, называют статически определимыми. Если на выделенный объект будет наложено большее число связей, то задача становится статически неопределимой и для ее решения кроме уравнений равновесия необходимо использовать дополнительные уравнения, составляемые на основании анализа деформаций. В общем случае закрепление или соединение двух деталей может исключать от одной до шести степеней свободы, т.е. накладывать от одной до шести связей. В соответствии с этим в закреплении может возникнуть от одной до шести реакций. Количество реактивных сил и их направление зависят от характера связей.

Приведем наиболее распространенные типы закрепления и соединения деталей.

  • 1. Соединения, исключающие возможность перемещения только в одном направлении. В таких соединениях возникает только одна реакция определенного направления. К соединениям этого типа относятся:
    • а) соединение посредством касания двух тел в точке или по линии. При касании возникает реакция, направленная по общей нормали к поверхностям касания (рис. 13.5). Такое соединение называется шарнирно-подвижным;

Рис . 13.5.

  • б) соединение, осуществляемое тросом, нитыо, цепыо, дает реакцию, направленную вдоль гибкой связи, причем такая связь может работать только на растяжение (см. рис. 13.5, б );
  • в) соединение в виде жесткого прямого стержня с шарнирным закреплением концов также дает реакцию, направленную вдоль оси стержня (см. рис. 13.5, в) у но может работать как на растяжение, так и па сжатие.

Рис. 13.6.

На рис. 13.5, г показано тело с тремя наложенными на него связями; каждая связь исключает возможность движения в одном направлении и дает одну реакцию, направление которой известно.

  • 2. Закрепление или соединение, исключающее перемещения по двум направлениям и соответственно дающее две реакции, носит название шарнирно-неподвижной опоры или цилиндрического шарнира (рис. 13.6).
  • 3. Соединение, исключающее перемещения по трем направлениям и дающее три реакции, носит название пространственного или шарового шарнира (рис. 13.7).
  • 4. Закрепление, исключающее все шесть степеней свободы, носит название жесткого закрепления или заделки. В заделке могут возникнуть шесть реактивных силовых факторов - три реактивные силы и три реактивных момента (рис. 13.8). При действии на тело с жесткой заделкой сил, расположенных в одной плоскости, в заделке возникают две реактивные силы и один реактивный момент.

Рис. 13.7.

Рис. 13.8.

При расчетах опоры схематизируют и условно делят на три основных группы:

  • шарнирно-подвижная (рис. 13.9, а), воспринимающая только одну линейную реакцию /?;
  • шарнирно-неподвижная (рис. 13.9, б), воспринимающая две линейные реакции R и Н.
  • защемление , или заделка (рис. 13.9, в ), воспринимающая линейные реакции R и Н и момент М.

Рис. 13.9.

При соприкосновении реальных тел и при их относительном движении в местах их контакта возникают силы трения, которые можно рассматривать как особый вид реактивных сил. Сила трения расположена в плоскости касания тел; при движении она направлена в сторону, противоположную относительной скорости тела.

Пример. Вал 1 с закрепленным на нем зубчатым колесом 2 установлен в двух подшипниках А и В. Па свободном конце вала насажен шкив ременной передачи 3 (рис. 13.10), Известны геометрические размеры а , с, передававшие крутящий момент М, диаметр шкива Д все параметры конического зубчатого колеса, а также соотношение сил натяжения ремня F a JF al = 2. Требуется определить реакции опор и силы натяжения ремня.


Рис. 13.10.

Решение проводим в три этана.

1. Выявляем активные силы, действующие в системе. Па коническое зубчатое колесо действует пространственно расположенная сила, составляющие которой по осям координат обозначены соответственно F v F r и F a . Составляющая F { , называемая окружной силой, определяется но заданному крутящему моменту на основании уравнения моментов относительно оси z

Радиальная составляющая F r и осевая составляющая F a определяются но окружной силе F ( на основании заданной геометрии зубчатого конического колеса.

2. Освобождаем вал (объект равновесия) от связей и вместо них прикладываем силы реакции Х л У л, Х в, Y B Z B .

Подшипники А и В следует рассматривать как шарнирные опоры, так как в них всегда имеются зазоры. В опоре А возникают две реакции Х л и У л, так как эта опора запрещает перемещение вала только в поперечных направлениях. В правой опоре возникают три реакции Х в, У в и Z B , так как она ограничивает перемещение вала также и в осевом направлении. Активные и реактивные силы в совокупности образуют пространственную систему уравновешенных сил.

3. Выбираем систему координат: оси х и у располагаем в плоскости, перпендикулярной оси вала, а ось z направляем по оси вала. Составляем шесть уравнений равновесия, используя (13.7) и (13.8).

Используя заданное условие F al = 2F ii2 и решив уравнения равновесия, найдем силы F aV F a2 и реакции опор

Настоящее издание поможет систематизировать полученные ранее знания, а также подготовиться к экзамену или зачету и успешно их сдать.

* * *

компанией ЛитРес .

2. Связи и реакции связей

Все тела делятся на свободные и связанные .

Свободные тела – это тела, перемещение которых не ограничено.

Связанные тела – это тела, перемещение которых ограничено другими телами.

Тела, ограничивающие перемещение других тел, называют связями .

Силы, действующие от связей и препятствующие перемещению, называют реакциями связей . Реакция связи всегда направлена с той стороны, куда нельзя перемещаться.

Всякое связанное тело можно представить свободным, если связи заменить их реакциями (принцип освобождения от связей).

Связи делятся на несколько типов.

Связь – гладкая опора (без трения) – реакция опоры приложена в точке опоры и всегда направлена перпендикулярно опоре.

Гибкая связь (нить, веревка, трос, цепь) – груз подвешен на двух нитях. Реакция нити направлена вдоль нити от тела, при этом нить может быть только растянута.

Жесткий стержень – стержень может быть сжат или растянут. Реакция стержня направлена вдоль стержня. Стержень работает на растяжение или сжатие. Точное направление реакции определяют, мысленно убрав стержень и рассмотрев возможные перемещения тела без этой связи.

Возможным перемещением точки называется такое бесконечно малое мысленное перемещение, которое допускается в данный момент.

Шарнирная опора. Шарнир допускает поворот вокруг точки закрепления. Различают два вида шарниров.

Подвижный шарнир. Стержень, закрепленный на шарнире, может поворачиваться вокруг шарнира, а точка крепления может перемещаться вдоль направляющей (площадки). Реакция подвижного шарнира направлена перпендикулярно опорной поверхности, так как не допускается только перемещение поперек опорной поверхности.

Неподвижный шарнир. Точка крепления перемещаться не может.

Стержень может свободно поворачиваться вокруг оси шарнира. Реакция такой опоры проходит через ось шарнира, но неизвестна по направлению. Ее изображают в виде двух составляющих: горизонтальной и вертикальной (R x , R y ).

Защемление, или «заделка». Любые перемещения точки крепления невозможны.

Под действием внешних сил в опоре возникают реактивная сила и реактивный момент М z , препятствующий повороту.

Реактивная сила представляется в виде двух составляющих вдоль осей координат:

R = R x + R y .

* * *

Приведённый ознакомительный фрагмент книги Техническая механика. Шпаргалка (Аурика Луковкина, 2009) предоставлен нашим книжным партнёром -

В процессе изучения статики, которая является одним из составляющих разделов механики, основная роль отводится аксиомам и базовым понятиям. При этом основных аксиом всего пять. Некоторые из них известны со школьных уроков физики, поскольку являются законами Ньютона.

Определение механики

Для начала необходимо упомянуть, что статика является подразделом механики. Последнюю следует описать подробнее, поскольку она напрямую связана со статикой. При этом механика - более общий термин, объединяющий в себе динамику, кинематику и статику. Все эти предметы изучались в школьном курсе физике и известны каждому. Даже входящие в изучение статики аксиомы базируются на известных со школьных лет Однако их было три, в то время как базовых аксиом статики - пять. Большая часть из них касается правил сохранения равновесия и прямолинейного равномерного перемещения определённого тела или материальной точки.

Механикой является наука о наиболее простом способе движения материи - механическом. Наиболее простыми движениями принято считать действия, сводимые к перемещению в пространстве и времени физического объекта из одного положения в другое.

Что изучает механика

В теоретической механике изучаются общие законы движения без учета индивидуальных свойств тела, кроме свойства протяжённости и гравитации (из этого следуют свойства частиц материи взаимно притягиваться либо иметь определенный вес).

В число базовых определений входит механическая сила. Данным термином называется движение, в механической форме передающееся от одного тела второму во время взаимодействия. По многочисленным наблюдениям было определено, что сила считается которая характеризуется направлением и точкой приложения.

По способу построения теоретическая механика схожа с геометрией: она так же базируется на определениях, аксиомах и теоремах. При этом на простых определениях связь не заканчивается. Большая часть рисунков, имеющих отношение к механике в целом и статике в частности, содержит геометрические правила и законы.

Теоретическая механика при этом включает три подраздела: статику, кинематику и динамику. В первой изучаются способы преобразования сил, приложенных к объекту и абсолютно твердому телу, а также условия возникновения равновесия. В кинематике рассматривается простое механическое движение, не учитывающее действующие силы. В динамике изучают движения точки, какой-либо системы или же твёрдого тела, учитывая действующие силы.

Аксиомы статики

Для начала следует рассмотреть основные понятия, аксиомы статики, виды связей и их реакции. Статикой именуется состояние равновесия с силами, которые прилагаются к абсолютно твердому телу. В ее задачи входят два основных пункта: 1 - основные понятия и аксиомы статики включают замену дополнительной системы сил, что были приложены к телу другой системой, эквивалентной ей. 2 - вывод общих правил, при которых тело под влиянием приложенных сил остаётся в покоящимся состояние либо в процессе равномерного поступательного прямолинейного движения.

Объекты в таких системах принято называть материальной точкой - телом, размеры которого в поставленных условиях можно опустить. Совокупность точек или тел, каким-либо образом взаимосвязанных между собой, именуют системой. Силы взаимного воздействия между этими телами зовутся внутренними, а силы, влияющие на данную систему - внешними.

Равнодействующей силой в определённой системе называется сила, эквивалентная приведённой системе сил. Входящие в состав этой системы зовутся составляющими силами. Уравновешивающая сила по своей величине равняется равнодействующей, но направляется в противоположном направлении.

В статике при решении вопроса о смене системы сил, влияющих на твердое тело, или о равновесии сил используют геометрические свойства векторов сил. Из этого становится понятным определение геометрической статики. Аналитическая статика, базирующаяся на принципе допустимых перемещений, будет описана в динамике.

Основные понятия и аксиомы статики

Условия нахождения тела в условиях равновесия выводятся из нескольких основных законов, используемых без дополнительных доказательств, но имеющих подтверждение в виде проведенных опытов, именуются аксиомами статики.

  • Аксиома I называется первым законом Ньютона (аксиома инерции). Каждое тело остается в состоянии покоя или равномерного прямолинейного движения до момента, пока сторонние силы не подействуют на это тело, выведя его из данного состояния. Данная способность тела именуется инертностью. Это одно из базовых свойств материи.
  • Аксиома II - третий закон Ньютона (аксиома взаимодействия). Когда одно тело воздействует на другое с определенной силой, то второе тело вместе с первым будет действовать на него с определенной силой, которая равна по модулю, противоположна по направлению.
  • Аксиома III - условие равновесия двух сил. Чтобы получить равновесие свободного тела, которое находится под влиянием двух сил, достаточно, чтобы данные силы были одинаковы по своему модулю и противоположны по направлению. Это также связано со следующим пунктом и входит в основные понятия и аксиомы статики, равновесие системы сходящих сил.
  • Аксиома IV. Равновесие не будет нарушено, если к твердому телу приложить или удалить уравновешенную систему сил.
  • Аксиома V - аксиома параллелограмма сил. Равнодействующая двух пересекающихся сил приложена в точке их пересечения и изображается диагональю параллелограмма, построенного на этих силах.

Связи и их реакции

В теоретической механике материальной точке, системе и твердому телу может быть дано два определения: свободное и несвободное. Различия между этими словами состоят в том, что если на перемещение точки, тела или системы не налагаются заранее указанные ограничения, то данные объекты будут по определению свободными. В обратной ситуации объекты принято называть несвободными.

Физические обстоятельства, приводящие к ограничению свободы названных материальных объектов, именуются связями. В статике могут иметься простейшие связи, выполняемые разными твердыми или гибкими телами. Сила действия связи на точку, систему или тело именуется реакцией связи.

Виды связей и их реакции

В обычной жизни связь может быть представлена нитями, шнурками, цепями или верёвками. В механике за данное определения принимают невесомые, гибкие и нерастяжимые связи. Реакции соответственно могут быть направлены по нити, веревке. При этом имеют место связи, линии действия которых нельзя определить сразу. В качестве примера основных понятий и аксиомы статикиможно привести неподвижный цилиндрический шарнир.

В его состав входит неподвижный цилиндрический болт, на который надета втулка с цилиндрическим отверстием, диаметр которого не превышает величины болта. При скреплении тела с втулкой первое сможет вращаться лишь по оси шарнира. В идеальном шарнире (при условии пренебрежения трения поверхности втулки и болта) появляется преграда для смещения втулки по направлению, перпендикулярному поверхности болта и втулки. В связи с этим реакция в идеальном шарнире имеет направлении по нормали - радиусу болта. Под влиянием действующих сил втулка способна прижиматься к болту в произвольной точке. В связи с этим направление реакции у неподвижного цилиндрического шарнира заранее определить невозможно. По этой реакции может быть известно лишь ее расположение в плоскости, перпендикулярной к шарнирной оси.

Во время решения задач реакция шарнира будет устанавливаться аналитическим методом путём разложения вектора. Основные понятия и аксиомы статики включают данный способ. Значения проекций реакции вычисляется из уравнений равновесия. Так же поступают в иных ситуациях, включающих невозможность определения направления реакции связи.

Система сходящихся сил

В число основных определений можно включить систему сил, которые сходятся. Так называемой системой сходящихся сил будет называться система, линии действия в которой пересекаются в единственной точке. Данная система приводит к равнодействующей или пребывает в состоянии равновесия. Учитывается данная система и в ранее указанных аксиомах, поскольку связана с сохранением равновесия тела, о чем говорится сразу в нескольких положениях. Последние указывают как на причины, необходимые для создания равновесия, так и на факторы, которые не вызовут изменения данного состояния. Равнодействующая данной системы сходящийся силы равняется векторной сумме названных сил.

Равновесие системы

В основные понятия и аксиомы статики система сходящихся сил также включается при изучении. Для нахождения системы в равновесии механическим условием становится нулевое значение равнодействующей силы. Поскольку векторная сумма сил нулевая, то многоугольник считается замкнутым.

В аналитическом виде условие равновесия системы будет заключаться в следующем: пребывающая в равновесии пространственная система сходящихся сил будет иметь алгебраическую сумму проекций силы на каждую из осей координат, равной нулю. Поскольку в такой ситуации равновесия равнодействующая будет нулевой, то проекции на оси координат также будут нулевыми.

Момент силы

Под данным определением имеется в виду векторное произведение вектора точки приложения сил. Вектор момента силы направлен перпендикулярно плоскости, в которой лежат сила и точка, в ту сторону, откуда поворот от действия силы виден происходящим против хода часовой стрелки.

Пара сил

Этим определением именуется система, состоящая из пары параллельных сил, одинаковых по величине, направленных в противоположные направления и приложенных к телу.

Момент пары сил может считаться положительным, если силы пары направлены против часовой стрелки в правосторонней системе координат, и отрицательным - направлены по направлению часовой стрелки в левой системе координат. При переводе от правой системы координат к левой ориентация сил меняется на противоположную. Минимальное значение расстояния среди линий действия сил именуется плечом. Из этого следует, что момент пары сил является свободным вектором, по модулю равняющимся М=Fh и имеющим перпендикулярно плоскости действия направление, что с вершины данного вектора силы были ориентированы положительно.

Равновесие в произвольных системах сил

Требуемым условием равновесия для произвольной пространственной системы сил, прилагаемой к твердому телу, считается обращение в нуль главного вектора и момента по отношению к любой точке пространства.

Из этого следует, что для достижения равновесия параллельных сил, располагаемых в одной плоскости, требуется и хватит того, что полученная сумма проекций сил на расположенную параллельно ось и алгебраическая сумма всех составляющих моментов, предоставленных сил относительно случайной точки, равняется нулю.

Центр тяжести у тела

Согласно закону всемирного тяготения, на каждую частицу, находящуюся поблизости от поверхности Земли, влияют силы притяжения, именуемыми силами тяжести. При небольших размерах тела во всех технических приложениях можно считать силы тяжести отдельных частиц тела системой практически параллельных сил. Если все силы тяжести частиц мы будем считать параллельными, то их равнодействующая будет численно равна сумме весов всех частиц, т. е. весу тела.

Предмет кинематики

Кинематикой именуется раздел из теоретической механики, который изучает механическое движение точки, системы точек и твердого тела в независимости от влияющих на них сил. Ньютон, исходя из материалистической позиции, считал объективным характер пространства и времени. Ньютон использовал определение абсолютного пространства и времени, но отделял их от перемещающейся материи, поэтому его можно назвать метафизиком. Диалектический материализм считает пространство и время объективными формами пребывания материи. Пространство и времени без материи не может существовать. В теоретической механике сказано, что пространство, включающее движущиеся тела, именуется трёхмерным эвклидовым пространством.

По сравнению с теоретической механикой, теория относительности основывается на иных представлениях о пространстве и времени. Помогло это возникновение новой геометрии, созданной Лобачевским. В отличие от Ньютона, Лобачевский не отделял пространство и время от видения, считая последнее изменением положения одних тел относительно других. В собственном произведении им было указано, что в природе человеком познается только движение, без коего чувственное представление становится невозможным. Из этого следует, что все прочие понятия, к примеру, геометрические, созданы разумом искусственно.

Из этого видно, что пространство рассматривается как проявление связи между перемещающими телами. Почти за век до возникновения теории относительности Лобачевский указал, что евклидова геометрия имеет отношение к абстрактным геометрически системам, тогда как в физическом мире пространственные взаимоотношения определяются физической геометрией, которая отличается от евклидовой, в которой свойства времени и пространства объединяются со свойствами материи, перемещающейся в пространстве и времени.

Не помешает заметить, что передовые ученые из России в области механики сознательно придерживались верных материалистических позиций в трактовке всех главных определений теоретической механики, в частности времени и пространства. При этом мнение о пространстве и времени в теории относительности сходны с представлениями о пространстве и времени сторонников марксизма, которые были созданы до возникновения работ о теории относительности.

При работе с теоретической механикой во время измерения пространства за главную единицу принимается метр, а за время - секунда. Время является одинаковым в каждой системе отсчета и находится вне зависимости от перемежения данных систем по отношению друг к другу. Время указывается символом и рассматривается в виде непрерывной изменчивой величины, используемой в роли аргумента. Во время измерения времени применяются определения промежутка времени, момента времени, начального времени, что входит в основные понятия и аксиомы статики.

Техническая механика

В практическом применении основные понятия и аксиомы статики и техническая механика связаны между собой. В технической механике изучается как сам механический процесс движения, так и возможность его использования в практических целях. К примеру, при создании технических и строительных конструкций и проверки их на прочность, что требует знать кратко основные понятия и аксиомы статики. При этом такое краткое изучение подойдет только любителям. В профильных учебных заведениях эта тема имеет немалую важность, к примеру, в случае с системой сил, основными понятиями и аксиомами статики.

В технической механике так же применяются приведенные выше аксиомы. К 1, основные понятия и аксиомы статики связаны с данным разделом. При том что в самой первой аксиоме объясняется принцип сохранения равновесия. В технической механике немаловажная роль отводится не только созданию приборов, но и при строительстве которых устойчивость и прочность являются основными критериями. Однако создать нечто подобное без знания базовых аксиом будет невозможно.

Общие замечания

К наиболее простым формам перемещения твердых тел относят поступательное и вращательное движение тела. В кинематике твердых тел при разных видах движений учитываются кинематические характеристики перемещения разных его точек. Вращательным движением тела вокруг неподвижной точки именуется такое движение, при котором прямая проходящая сквозь пару произвольных точек в процессе движения тела сохраняется в состоянии покоя. Данная прямая именуется осью вращения тел.

В тексте выше приводились кратко основные понятия и аксиомы статики. При этом существует большое количество сторонней информации, с помощью которой можно лучше узнать статику. Не стоит забывать базовые данные, в большинстве примеров основные понятия и аксиомы статики абсолютно твердое тело включают, поскольку это некий эталон для объекта, который может быть не достижим в нормальных условиях.

Затем следует вспомнить об аксиомах. К примеру, основные понятия и аксиомы статики, связи и их реакции входят в их число. Несмотря на то, что многие аксиомы лишь объясняют принцип сохранения равновесия или равномерного движения, это не отменяет их значимости. Начиная со школьного курса данные аксиомы и правила изучаются, поскольку являются всем известными законами Ньютона. Необходимость в их упоминании связана с практическим применением сведений статики и механики в целом. Примером послужила техническая механика, в которой, помимо создания механизмов, требуется понимать принцип конструирования устойчивых построек. Благодаря таким сведениям возможно правильное возведение обычных сооружений.