Каждой тригонометрической функции для данного угла (или числа) α соответствует определенное значение этой функции. Из определений синуса, косинуса, тангенса и котангенса ясно, что значением синуса угла α является ордината точки, в которую переходит начальная точка единичной окружности после ее поворота на угол α , значением косинуса – абсцисса этой точки, значением тангенса – отношение ординаты к абсциссе, а значением котангенса – отношение абсциссы к ординате.

Достаточно часто при решении задач возникает необходимость в нахождении значений синусов, косинусов, тангенсов и котангенсов указанных углов. Для некоторых углов, например в 0, 30, 45, 60, 90, … градусов, есть возможность найти точные значения тригонометрических функций, для других углов нахождение точных значений оказывается проблематичным и приходится довольствоваться приближенными значениями.

В этой статье мы разберемся, какими принципами следует руководствоваться при вычислении значения синуса, косинуса, тангенса или котангенса. Перечислим их по порядку.

  • Приближенное значение указанной тригонометрической функции можно найти по определению. А для углов 0, ±90, ±180 и т.д. градусов определение тригонометрических функций позволяет указать точные значения синуса, косинуса, тангенса и котангенса.
  • Соотношения между сторонами и углами в прямоугольном треугольнике позволяют найти значения синуса, косинуса, тангенса и котангенса для «основных» углов 30 , 45 , 60 градусов.
  • Если угол выходит за пределы от 0 до 90 градусов, то сначала следует воспользоваться формулами приведения , что позволит перейти к вычислению значения тригонометрических функций с аргументом от 0 до 90 градусов.
  • Если известно значение одной из тригонометрических функций для данного угла α , то мы всегда можем вычислить значение любой другой тригонометрической функции этого же угла. Это нам позволяют сделать основные тригонометрические тождества .
  • Иногда возможно вычислить значение данной тригонометрической функции для данного угла, отталкиваясь от значений функций для основных углов и используя подходящие формулы тригонометрии . Например, по известному значению синуса 30 градусов и формуле половинного угла для синуса можно найти значение синуса 15 градусов.
  • Наконец, всегда можно найти приближенное значение данной тригонометрической функции для данного угла, обратившись к нужной из таблиц синусов, косинусов, тангенсов и котангенсов .

Теперь рассмотрим каждый из перечисленных принципов вычисления значений синусов, косинусов, тангенсов и котангенсов подробно.

Навигация по странице.

Нахождение значений синуса, косинуса, тангенса и котангенса по определению

Отталкиваясь от определения синуса и косинуса, можно найти значения синуса и косинуса данного угла α . Для этого нужно взять единичную окружность, повернуть начальную точку А(1, 0) на угол α , после чего она перейдет в точку А 1 . Тогда координаты точки А 1 дадут соответственно косинус и синус данного угла α . После этого можно вычислить тангенс и котангенс угла α , вычислив отношения ординаты к абсциссе и абсциссы к ординате соответственно.

По определению мы можем вычислить точные значения синуса, косинуса, тангенса и котангенса углов 0, ±90, ±180, ±270, ±360, … градусов (0, ±π/2, ±π, ±3π/2, ±2π, … радианов). Разобьем эти углы на четыре группы: 360·z градусов (2π·z рад), 90+360·z градусов (π/2+2π·z рад), 180+360·z градусов (π+2π·z рад) и 270+360·z градусов (3π/2+2π·z рад), где z – любое . Изобразим на рисунках, где будет располагаться точка А 1 , получающаяся при повороте начальной точки А на эти углы (при необходимости изучите материал статьи угол поворота).

Для каждой из этих групп углов найдем значения синуса, косинуса, тангенса и котангенса, используя определения.

Что касается остальных углов, отличных от 0, ±90, ±180, ±270, ±360, … градусов, то по определению мы можем найти лишь приближенные значения синуса, косинуса, тангенса и котангенса. Для примера найдем синус, косинус, тангенс и котангенс угла −52 градуса.

Выполним построения.

По чертежу находим, что абсцисса точки А 1 приближенно равна 0,62 , а ордината приближенно равна −0,78 . Таким образом, и . Остается вычислить значения тангенса и котангенса, имеем и .

Понятно, что чем точнее будут выполнены построения, тем точнее будут найдены приближенные значения синуса, косинуса, тангенса и котангенса данного угла. Также понятно, что нахождение значений тригонометрических функций по определению не удобно на практике, так как неудобно выполнять описанные построения.

Линии синусов, косинусов, тангенсов и котангенсов

Вкратце стоит остановиться на так называемых линиях синусов, косинусов, тангенсов и котангенсов . Линиями синусов, косинусов, тангенсов и котангенсов называют линии, изображаемые совместно с единичной окружностью, имеющие начало отсчета и единицу измерения, равную единице во введенной прямоугольной системе координат, на них наглядно представляются все возможные значения синусов, косинусов, тангенсов и котангенсов. Изобразим их на чертеже ниже.

Значения синусов, косинусов, тангенсов и котангенсов углов 30, 45 и 60 градусов

Для углов 30 , 45 и 60 градусов известны точные значения синуса, косинуса, тангенса и котангенса. Они могут быть получены по определениям синуса, косинуса, тангенса и котангенса острого угла в прямоугольном треугольнике с использованием теоремы Пифагора .

Чтобы получить значения тригонометрических функций для углов 30 и 60 градусов рассмотрим прямоугольный треугольник с этими углами, причем его возьмем таким, чтобы длина гипотенузы равнялась единице. Известно, что катет, лежащий напротив угла 30 градусов вдвое меньше гипотенузы, следовательно, его длина равна 1/2 . Длину другого катета находим по теореме Пифагора: .

Так как синус угла – это отношение противолежащего катета к гипотенузе, то и . В свою очередь косинус – это отношение прилежащего катета к гипотенузе, тогда и . Тангенс – это отношение противолежащего катета к прилежащему, а котангенс – это отношение прилежащего катета к противолежащему, следовательно, и , а также и .

Осталось получить значения синуса, косинуса, тангенса и котангенса для угла 45 градусов. Обратимся к прямоугольному треугольнику с углами 45 градусов (он будет равнобедренным) и гипотенузой, равной единице. Тогда по теореме Пифагора несложно проверить, что длины катетов равны . Теперь мы можем вычислить значения синуса, косинуса, тангенса и котангенса как отношение длин соответствующих сторон рассматриваемого прямоугольного треугольника. Имеем и .

Полученные значения синуса, косинуса, тангенса и котангенса углов 30 , 45 и 60 градусов будут очень часто использоваться при решении различных геометрических и тригонометрических задач, так что рекомендуем их запомнить. Для удобства занесем их в таблицу основных значений синуса, косинуса, тангенса и котангенса .

В заключение этого пункта приведем иллюстрацию значений синуса, косинуса, тангенса и котангенса углов 30 , 45 и 60 с использованием единичной окружности и линий синуса, косинуса, тангенса и котангенса.


Сведение к углу из интервала от 0 до 90 градусов

Сразу заметим, что удобно находить значения тригонометрических функций, когда угол находится в интервале от 0 до 90 градусов (от нуля до пи пополам рад). Если же аргумент тригонометрической функции, значение которой нам нужно найти, выходит за пределы от 0 до 9 0 градусов, то мы всегда при помощи формул приведения можем перейти к нахождению значения тригонометрической функции, аргумент которой будет в указанных пределах.

Для примера найдем значение синуса 210 градусов. Представив 210 как 180+30 или как 270−60 , соответствующие формулы приведения сводят нашу задачу от нахождения синуса 210 градусов к нахождению значения синуса 30 градусов , или косинуса 60 градусов .

Давайте на будущее условимся при нахождении значений тригонометрических функций всегда с помощью формул приведения переходить к углам из интервала от 0 до 90 градусов, если конечно угол уже не находится в этих пределах.

Достаточно знать значение одной из тригонометрических функций

Основные тригонометрические тождества устанавливают связи между синусом, косинусом, тангенсом и котангенсом одного и того же угла. Таким образом, с их помощью мы можем по известному значению одной из тригонометрических функций найти значение любой другой функции этого же угла.

Рассмотрим решение примера.

Пример.

Определите, чему равен синус угла пи на восемь, если .

Решение.

Сначала найдем чему равен котангенс этого угла:

Теперь, используя формулу , мы можем вычислить, чему равен квадрат синуса угла пи на восемь, а следовательно, и искомое значение синуса. Имеем

Осталось лишь найти значение синуса. Так как угол пи на восемь является углом первой координатной четверти, то синус этого угла положителен (при необходимости смотрите раздел теории знаки синуса, косинуса, тангенса и котангенса по четвертям). Таким образом, .

1. Тригонометрические функции представляют собой элементарные функции, аргументом которых является угол . С помощью тригонометрических функций описываются соотношения между сторонами и острыми углами в прямоугольном треугольнике. Области применения тригонометрических функций чрезвычайно разнообразны. Так, например, любые периодические процессы можно представить в виде суммы тригонометрических функций (ряда Фурье). Данные функции часто появляются при решении дифференциальных и функциональных уравнений.

2. К тригонометрическим функциям относятся следующие 6 функций: синус , косинус , тангенс ,котангенс , секанс и косеканс . Для каждой из указанных функций существует обратная тригонометрическая функция.

3. Геометрическое определение тригонометрических функций удобно ввести с помощью единичного круга . На приведенном ниже рисунке изображен круг радиусом r=1. На окружности обозначена точка M(x,y). Угол между радиус-вектором OM и положительным направлением оси Ox равен α.

4. Синусом угла α называется отношение ординаты y точки M(x,y) к радиусу r:
sinα=y/r.
Поскольку r=1, то синус равен ординате точки M(x,y).

5. Косинусом угла α называется отношение абсциссы x точки M(x,y) к радиусу r:
cosα=x/r

6. Тангенсом угла α называется отношение ординаты y точки M(x,y) к ee абсциссе x:
tanα=y/x,x≠0

7. Котангенсом угла α называется отношение абсциссы x точки M(x,y) к ее ординате y:
cotα=x/y,y≠0

8. Секанс угла α − это отношение радиуса r к абсциссе x точки M(x,y):
secα=r/x=1/x,x≠0

9. Косеканс угла α − это отношение радиуса r к ординате y точки M(x,y):
cscα=r/y=1/y,y≠0

10. В единичном круге проекции x, y точки M(x,y) и радиус r образуют прямоугольный треугольник, в котором x,y являются катетами, а r − гипотенузой. Поэтому, приведенные выше определения тригонометрических функций в приложении к прямоугольному треугольнику формулируются таким образом:
Синусом угла α называется отношение противолежащего катета к гипотенузе.
Косинусом угла α называется отношение прилежащего катета к гипотенузе.
Тангенсом угла α называется противолежащего катета к прилежащему.
Котангенсом угла α называется прилежащего катета к противолежащему.
Секанс угла α представляет собой отношение гипотенузы к прилежащему катету.
Косеканс угла α представляет собой отношение гипотенузы к противолежащему катету.

11. График функции синус
y=sinx, область определения: x∈R, область значений: −1≤sinx≤1

12. График функции косинус
y=cosx, область определения: x∈R, область значений: −1≤cosx≤1

13. График функции тангенс
y=tanx, область определения: x∈R,x≠(2k+1)π/2, область значений: −∞

14. График функции котангенс
y=cotx, область определения: x∈R,x≠kπ, область значений: −∞

15. График функции секанс
y=secx, область определения: x∈R,x≠(2k+1)π/2, область значений:secx∈(−∞,−1]∪∪. - 20-е изд. М.: Просвещение, 2010. - 384 с.: ил. - ISBN 978-5-09-023915-8.

  • Погорелов А. В. Геометрия: Учеб. для 7-9 кл. общеобразоват. учреждений/ А. В. Погорелов. - 2-е изд - М.: Просвещение, 2001. - 224 с.: ил. - ISBN 5-09-010803-X.
  • Алгебра и элементарные функции : Учебное пособие для учащихся 9 класса средней школы / Е. С. Кочетков, Е. С. Кочеткова; Под редакцией доктора физико-математических наук О. Н. Головина.- 4-е изд. М.: Просвещение, 1969.
  • Алгебра: Учеб. для 9 кл. сред. шк./Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова; Под ред. С. А. Теляковского.- М.: Просвещение, 1990.- 272 с.: ил.- ISBN 5-09-002727-7
  • Алгебра и начала анализа: Учеб. для 10-11 кл. общеобразоват. учреждений / А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын и др.; Под ред. А. Н. Колмогорова.- 14-е изд.- М.: Просвещение, 2004.- 384 с.: ил.- ISBN 5-09-013651-3.
  • Мордкович А. Г. Алгебра и начала анализа. 10 класс. В 2 ч. Ч. 1: учебник для общеобразовательных учреждений (профильный уровень)/ А. Г. Мордкович, П. В. Семенов. - 4-е изд., доп. - М.: Мнемозина, 2007. - 424 с.: ил. ISBN 978-5-346-00792-0.
  • Алгебра и начала математического анализа. 10 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни /[Ю. М. Колягин, М. В. Ткачева, Н. Е. Федорова, М. И. Шабунин]; под ред. А. Б. Жижченко. - 3-е изд. - И.: Просвещение, 2010.- 368 с.: ил.- ISBN 978-5-09-022771-1.
  • Башмаков М. И. Алгебра и начала анализа: Учеб. для 10-11 кл. сред. шк. - 3-е изд. - М.: Просвещение, 1993. - 351 с.: ил. - ISBN 5-09-004617-4.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.
  • Определения

    Определения тригонометрическим функциям даются с помощью тригонометрической окружности, под которой понимается окружность единичного радиуса с центром в начале координат.

    Рассмотрим два радиуса этой окружности: неподвижный (где точка) и подвижный (где точка). Пусть подвижный радиус образует с неподвижным угол.

    Число, равное ординате конца единичного радиуса, образующего угол с неподвижным радиусом, называется синусом угла : .

    Число, равное абсциссе конца единичного радиуса, образующего угол с неподвижным радиусом, называется косинусом угла : .

    Таким образом, точка, являющаяся концом подвижного радиуса, образующего угол, имеет координаты.

    Тангенсом угла называется отношение синуса этого угла к его косинусу: , .

    Котангенсом угла называется отношение косинуса этого угла к его синусу: , .

    Геометрический смысл тригонометрических функций

    Геометрический смысл синуса и косинуса на тригонометрической окружности понятен из определения: это абсцисса и ординат точки пересечения подвижного радиуса, составляющего угол с неподвижным радиусом, и тригонометрической окружности. То есть, .

    Рассмотрим теперь геометрический смысл тангенса и котангенса. Треугольники подобен по трем углам (,), тогда имеет место отношение. С другой стороны, в, следовательно.

    Также подобен по трем углам (,), тогда имеет место отношение. С другой стороны, в, следовательно.

    С учетом геометрического смысла тангенса и котангенса вводят понятие оси тангенсов и оси котангенсов.

    Осями тангенсов называются оси, одна из которых касается тригонометрической окружности в точке и направлена вверх, вторая касается окружности в точке и направлена вниз.

    Осями котангенсов называются оси, одна из которых касается тригонометрической окружности в точке и направлена вправо, вторая касается окружности в точке и направлена влево.

    Свойства тригонометрических функций

    Рассмотрим некоторые основные свойства тригонометрических функций. Остальные свойства будут рассмотрены в разделе, посвященном графикам тригонометрических функций.

    Область определения и область значений

    Как уже было сказано ранее, синус и косинус существуют для любых углов, т.е. областью определения этих функций является множество действительных чисел. По определению тангенс не существует для углов , а котангенс для углов, .

    Поскольку синус и косинус являются ординатой и абсциссой точки на тригонометрической окружности, их значения лежат в промежутке. Областью значения тангенса и котангенса является множество действительных чисел (в этом нетрудно убедиться, глядя на оси тангенсов и котангенсов).

    Четность/нечетность

    Рассмотрим тригонометрические функции двух углов (который соответствует подвижному радиусу) и (который соответствует подвижному радиусу). Поскольку, значит точка имеет координаты. Поэтому, т.е. синус - функция нечетная; , т.е. косинус - функция четная; , т.е. тангенс нечетен; , т.е. котангенс также нечетен.

    Промежутки знакопостоянства

    Знаки тригонометрических функций для различных координатных четвертей следуют из определения этих функций. Следует отметить, что поскольку тангенс и котангенс являются отношениями синуса и косинуса, они положительны, когда синус и косинус угла имеют одинаковые знаки и отрицательны когда разные.

    Периодичность


    Периодичность синуса и косинуса основана на том факте, что углы, отличающиеся на целое количество полных оборотов, соответствуют одному и тому же взаимному расположению подвижного и неподвижного лучей. Соответственно и координаты точки пересечения подвижного луча и тригонометрической окружности будут одинаковы для углов, отличающихся на целое количество полных оборотов. Таким образом, периодом синуса и косинуса является и, где.

    Очевидно, что также является периодом для тангенса и котангенса. Но существует ли меньший период для этих функций? Докажем, что наименьшим периодом для тангенса и котангенса является.

    Рассмотрим два угла и. Оп геометрическому смыслу тангенса и котангенса, . По стороне и прилежащим к ней углам равны треугольники и, значит равны и их стороны, значит и. Аналогичным образом можно доказать, то, где. Таким образом, периодом тангенса и котангенса является.

    Тригонометрические функции основных углов

    Формулы тригонометрии

    Для успешного решения тригонометрических задач необходимо владеть многочисленными тригонометрическими формулами. Тем не менее, нет необходимости заучивать все формулы. Знать наизусть нужно лишь самые основные, а остальные формулы нужно уметь при необходимости вывести.

    Основное тригонометрическое тождество и следствия из него

    Все тригонометрические функции произвольного угла связаны между собой, т.е. зная одну функции всегда можно найти остальные. Эту связь дают формулы, рассматриваемые в данном разделе.

    Теорема 1 (Основное тригонометрическое тождество) . Для любого справедливо тождество

    Доказательство состоит в применении теоремы Пифагора для прямоугольного треугольника с катетами, и гипотенузой.

    Справедлива и более общая теорема.

    Теорема 2 . Для того, чтобы два числа можно было принять за косинус и синус одного и того же вещественного угла, необходимо и достаточно, чтобы сумма их квадратов была равна единице:

    Рассмотрим следствия из основного тригонометрического тождества.

    Выразим синус через косинус и косинус через синус:

    В данный формулах знак плюс или минус перед корнем выбирается в зависимости от четверти, в которой лежит угол.

    Подставляя полученные выше формулы в формулы, определяющие тангенс и котангенс, получаем:

    Разделив основное тригонометрическое тождество почленно на или получим соотвественно:

    Эти соотношения можно переписать в виде:

    Следующие формулы дают связь между тангенсом и котангенсом. Поскольку при, а при, то имеет место равенство:

    Формулы приведения

    С помощью формул приведения можно выразить значения тригонометрических функций произвольных углов через значения функций острого угла. Все формулы приведения могут быть обобщены с помощью следующего правила.

    Любая тригонометрическая функция угла, по абсолютной величине равна той же функции угла, если число - четное, и ко-функции угла, если число - нечетное. При этом если функция угла, положительна, когда - острый положительный угол, то знаки обеих функций одинаковы, если отрицательна, то различны.

    Формулы суммы и разность углов

    Теорема 3 . Для любых вещественных и справедливы следующие формулы:

    Доказательство остальных формул основано на формулах приведения и четности/нечетности тригонометрических функций.

    Что и требовалось доказать.

    Теорема 4 . Для любых вещественных и, таких, что

    1. , справедливы следующие формулы

    2. , справедливы следующие формулы

    Доказательство. По определению тангенса

    Последнее преобразование получено делением числителя и знаменателя этой дроби на.

    Аналогично для котангенса (числитель и знаменатель в этом случае делятся на):

    Что и требовалось доказать.

    Следует обратить внимание на тот факт, что правые и левые части последних равенств имеют разные области допустимых значений. Поэтому применение этих формул без ограничений на возможные значения углов может привести к неверным результатам.

    Формулы двойного и половинного угла

    Формулы двойного угла позволяют выразить тригонометрические функции произвольного угла через функции угла в два раза меньше исходного. Эти формулы являются следствиями формул суммы двух углов, если положить в них углы равными друг другу.

    Последнюю формулу можно преобразовать с помощью основного тригонометрического тождества:

    Таким образом, для косинуса двойного угла существует три формулы:

    Следует отметить, что данная формула справедлива только при

    Последняя формула справедлива при, .

    Аналогично функциям двойного угла могут быть получены функции тройного угла. Здесь данные формулы приводятся без доказательства:

    Формулы половинного угла являются следствиями формул двойного угла и позволяют выразить тригонометрические функции некоторого угла через функции угла в два раза больше исходного.