Вирусы – микроорганизмы, составляющие царство Vira.

Отличительные признаки:

2) не имеют собственных белоксинтезирующих и энергетических систем;

3) не имеют клеточной организации;

4) обладают дизъюнктивным (разобщенным) способом репродукции (синтез белков и нуклеиновых кислот происходит в разных местах и в разное время);

6) вирусы проходят через бактериальные фильтры.

Вирусы могут существовать в двух формах: внеклеточной (вириона) и внутриклеточной (вируса).

По форме вирионы могут быть:

1) округлыми;

2) палочковидными;

3) в виде правильных многоугольников;

4) нитевидными и др.

Размеры их колеблются от 15–18 до 300–400 нм.

В центре вириона – вирусная нуклеиновая кислота, покрытая белковой оболочкой – капсидом, который имеет строго упорядоченную структуру. Капсидная оболочка построена из капсомеров. Нуклеиновая кислота и капсидная оболочка составляют нуклеокапсид.

Нуклеокапсид сложноорганизованных вирионов покрыт внешней оболочкой – суперкапсидом, которая может включать в себя множество функционально различных липидных, белковых, углеводных структур.

Строение ДНК– и РНК-вирусов принципиально не отличается от НК других микроорганизмов. У некоторых вирусов в ДНК встречается урацил.

ДНК может быть:

1) двухцепочечной;

2) одноцепочечной;

3) кольцевой;

4) двухцепочечной, но с одной более короткой цепью;

5) двухцепочечной, но с одной непрерывной, а с другой фрагментированной цепями.

РНК может быть:

1) однонитевой;

2) линейной двухнитевой;

3) линейной фрагментированной;

4) кольцевой;

Вирусные белки подразделяют на:

1) геномные – нуклеопротеиды. Обеспечивают репликацию вирусных нуклеиновых кислот и процессы репродукции вируса. Это ферменты, за счет которых происходит увеличение количества копий материнской молекулы, или белки, с помощью которых на матрице нуклеиновой кислоты синтезируются молекулы, обеспечивающие реализацию генетической информации;

2) белки капсидной оболочки – простые белки, обладающие способностью к самосборке. Они складываются в геометрически правильные структуры, в которых различают несколько типов симметрии: спиральный, кубический (образуют правильные многоугольники, число граней строго постоянно) или смешанный;

3) белки суперкапсидной оболочки – это сложные белки, разнообразные по функции. За счет них происходит взаимодействие вирусов с чувствительной клеткой. Выполняют защитную и рецепторную функции.

Среди белков суперкапсидной оболочки выделяют:

а) якорные белки (одним концом они располагаются на поверхности, а другим уходят в глубину; обеспечивают контакт вириона с клеткой);

б) ферменты (могут разрушать мембраны);

в) гемагглютинины (вызывают гемагглютинацию);

г) элементы клетки хозяина.

    Вирусы классифицируются на те, которые содержат ДНК (вирус простого герпеса) и те, что содержат РНК (вирус иммунодефицита человека).

    По структуре капсомеров. Изометрические (кубические), спиральные, смешанные.

    По наличию или отсутствию дополнительной липопротеидной оболочки

    За клетками-хозяевами

Наиболее применяемая в настоящее время классификация вирусов предложенная лауреатом Нобелевской премии Дэвидом Балтимор. Она построена на типе нуклеиновой кислоты, которая используется вирусом для переноса наследственного материала, и на том, каким путем происходит ее экспрессия и репликация. Стоит отметить, что такая классификация не отражает филогенетические связи между видами вирусов, так как вирусы, согласно общепринятым сейчас взглядом, имеют механизмы происхождения, отличные от всех других организмов.

В отличие от клеточных организмов, генетическая информация которых хранится в виде двухцепочечной ДНК, геном вируса может сохраняться как в виде двух-, так одноцепочечныхнуклеиновых кислот. При этом этой кислотой может быть как ДНК, так и РНК, матричная форма которой (м-РНК) используется в клетках как промежуточный продукт при трансляции генетической информации в процессе синтеза протеинов. РНК-геномы вирусов могут быть закодированы в двух противоположных направлениях: или гены расположены в направлении от 5"-конца молекулы к 3"-концу (положительное направление, или + полярность), аналогично направлению расположения генов в м-РНК в клетках, или гены вирусного генома расположены в противоположном направлении (отрицательный направление, или-полярность).

Таксономия вирусов в основных чертах похожа на таксономию клеточных организмов. Таксономические категории, используемые в классификации вирусов, такие (в скобках приведены суффиксы для образования латинских названий):

    Ряд (-virales )

    Семья (-viridae )

    Подсемейство (-virinae )

    Род (-virus )

Но в номенклатуре вирусов есть и некоторые особенности, отличающие ее от номенклатуры клеточных организмов. Во-первых, названия не только видов и родов, но также рядов и семей пишутся курсивом, во-вторых, в отличие от классической линнеевськои номенклатуры, названия вирусов не является биноминальной (т.е. образованными из названия рода и эпитета вида - подробнее см.. в статье «Научная классификация»). Обычно названия вирусов образуются в форме [Болезнь] -вирус.

В целом в настоящее время описано около 80 семей, в которые входят примерно 4000 отдельных видов вирусов.

Распределение семей на ряды начался недавно и происходит медленно; в настоящее время (2005 год) выделено и описано диагностические признаки только трех рядов, и большинство описанных семей является неклассифицированных.

Рис. 4.1

Морфологию вирусов изучают с помощью электронной микроскопии, так как их размеры малы (18-400 нм) и сравнимы с толщиной оболочки бактерий. Форма вирионов может быть различной: палочковидной (вирус табачной мозаики), пулевидной (вирус бешенства), сферической (вирусы полиомиелита, ВИЧ), нитевидной (филовирусы), в виде сперматозоида (многие бактериофаги). Различают просто устроенные и сложно устроенные вирусы (табл. 4.1).

Просто устроенные вирусы (без оболочки)

Пример просто устроенных вирусов - вирус гепатита А и папилломавирус с икосаэдрическим типом симметрии (рис. 4.1 и 4.2). Нуклеиновая кислота вирусов связана с белковой оболочкой - капсидом, состоящим из капсомеров.

Рис. 4.2. Схема строения папилломавируса (содержит двунитевую кольцевую ДНК)

Сложно устроенные вирусы (с оболочкой)

У сложно устроенных вирусов (например, у вирусов герпеса, гриппа, флавивирусов) от липопротеиновой оболочки отходят гликопротеиновые шипы, например, гемагглютинины, участвующие в реакциях гемагглютинации и гемадсорбции. Вирус герпеса и флавивирус имеют икосаэдрический тип симметрии, а вирус гриппа - спиральный тип симметрии нуклеокапсида.

Таблица 4.1. Просто устроенные (без оболочки) и сложно устроенные (с оболочкой) вирусы

Простые, или безоболочечные, вирусы состоят из нуклеиновой кислоты и белковой оболочки, называемой капсидом (от лат. capsa - футляр). Капсид состоит из повторяющихся морфологических субъединиц - капсомеров. Нуклеиновая кислота и капсид взаимодействуют друг с другом, образуя нуклеокапсид.

Тип симметрии
Капсид или нуклеокапсид могут иметь спиральный, икосаэдрический (кубический) или сложный тип симметрии. Икосаэдрический тип симметрии обусловлен образованием изометрически полого тела из капсида,

Сложные, или оболочечные, вирусы снаружи капсида окружены липопротеиновой оболочкой (суперкапсидом, или пеплосом). Эта оболочка является производной структурой от мембран вирус-инфицированной клетки. На оболочке вируса расположены гликопротеиновые шипы, или шипики (пепломеры). Под оболочкой некоторых вирусов находится матриксный М-белок.


Рис. 4.3.


Рис. 4.4.


Рис. 4.5


Рис. 4.6.

Репродукция вирусов

Различают три типа взаимодействия вируса с клеткой:
- продуктивный тип, при котором образуются новые вирионы, по-разному выходящие из клетки: при ее лизисе, т. е. «взрывным» механизмом (безоболочечные вирусы); путем «почкования» через мембраны клетки (оболочечные вирусы), в результате экзоцитоза;
- абортивный тип, характеризующийся прерыванием инфекционного процесса в клетке, поэтому новые вирионы не образуются;
- интегративный тип, или вирогения, заключающийся в интеграции, т. е. встраивании вирусной ДНК в виде провируса в хромосому клетки и их совместном сосуществовании (совместная репликация).
Продуктивный тип взаимодействия вируса с клеткой - репродукция вируса проходит несколько стадий: 1) адсорбция вирионов на клетке; 2) проникновение вируса в клетку;
3) «раздевание» и высвобождение вирусного генома (депротеинизация вируса); 4) синтез вирусных компонентов;
5) формирование вирусов; 6) выход вирионов из клетки.

Механизм репродукции вирусов

Механизм репродукции отличается у вирусов, имеющих: 1) двунитевую ДНК; 2) однонитевую ДНК; 3) плюс-однонитевую РНК; 4) минус-однонитевую РНК; 5) двунитевую РНК;
6) идентичные плюс-нитевые РНК (ретровирусы).
Двунитевые ДНК-вирусы - вирусы, содержащие двунитевую ДНК в линейной (например, герпесвирусы, аденовирусы и поксвирусы) или в кольцевой форме (как папилломавирусы).
Репликация двунитевых вирусных ДНК проходит обычным полуконсервативным механизмом: после расплетения нитей ДНК к ним комплементарно достраиваются новые нити. У всех вирусов, кроме поксвирусов, транскрипция вирусного генома происходит в ядре.
Уникальна по механизму репродукция гепаднавирусов (вируса гепатита В).
Геном гепаднавирусов (рис. 4.7) представлен двунитевой кольцевой ДНК, одна нить которой короче (неполная плюснить) другой нити. После проникновения в клетку сердцевины вируса (1) неполная нить ДНК-генома достраивается; формируется полная двунитевая кольцевая ДНК (2) и созревающий геном (3) попадает в ядро клетки. Здесь клеточная ДНК-зависимая РНК-полимераза синтезирует разные иРНК (для синтеза вирусных белков) и РНК-прегеном (4) - матрицу для репликации генома вируса. Далее иРНК перемещаются в цитоплазму и транслируются с образованием белков вируса. Белки сердцевины вируса собираются вокруг прегенома. Под действием РНК-зависимой ДНК-полимеразы вируса на матрице прегенома синтезируется минус-нить ДНК (5), на которой образуется плюс-нить ДНК (6). Оболочка вириона формируется на HBs-содержащих мембранах эндоплазматической сети или аппарата Гольджи (7). Вирион выходит из клетки экзоцитозом.


Рис. 4.7.

Однонитевые ДНК-вирусы. Представителями однонитевых ДНК-вирусов являются парвовирусы (рис. 4.8).

Поглощенный вирус поставляет геном в ядро клетки. Парвовирусы используют клеточные ДНК-полимеразы для создания двунитевого вирусного генома, так называемой репликативной формы последнего. При этом на исходной вирусной ДНК (плюс-нить) комплементарно синтезируется минус-нить ДНК, служащая матрицей в синтезе плюс-нити ДНК для новых поколений вирусов. Параллельно синтезируется иРНК, происходит трансляция вирусных белков, которые возвращаются в ядро, где собираются вирионы.
Плюс-однонитевые РНК-вирусы. Это большая группа вирусов (пикорнавирусы, флавивирусы, тогавирусы и др.), у которых геномная плюс-нить РНК выполняет функцию иРНК (рис. 4.9).

Вирус (1), после эндоцитоза, освобождает в цитоплазме (2) геномную плюс-РНК, которая как иРНК связывается с рибосомами (3): транслируется полипротеин (4), который расщепляется на 4 структурных белка (NSP 1-4), включая РНК-зависимую РНК-полимеразу. Эта полимераза транскрибирует геномную плюс-РНК в минус-нить РНК (матрицу), на которой (5) синтезируются копии РНК двух размеров: полная плюс-нить 49S геномной РНК; неполная нить 26S иРНК, кодирующая С-белок капсида (6) и гликопротеины оболочки Е1-3. Гликопротеины синтезируются на рибосомах, связанных с мембранами эндоплазматического ретикулума, затем включаются в мембрану и гликозилируются. Дополнительно гликозилируясь в аппарате Гольджи (7), они встраиваются в плазмалемму. С-белок образует с геномной РНК нуклеокапсид который взаимодействует с модифицированной плазмалеммой (8). Вирусы выходят из клетки почкованием (9).
Минус-однонитевые РНК-вирусы (рабдовирусы, парамиксовирусы, ортомиксовирусы) имеют в своем составе РНК-зависимую РНК-полимеразу.
Проникшая в клетку геномная минус-нить РНК парамиксовируса (рис. 4.10) трансформируется вирусной РНК-зависимой РНК-полимеразой в неполные и полные плюс-нити РНК. Неполные копии выполняют роль иРНК для синтеза вирусных белков. Полные копии являются промежуточной матрицей для синтеза минус-нитей геномной РНК потомства.

Рис.4.8.

Рис. 4.9.


Рис. 4.10

Вирус связывается гликопротеинами оболочки с поверхностью клетки и сливается с плазмалеммой (1). С геномной минус-нити РНК вируса транскрибируются неполные плюс-нити РНК, являющиеся иРНК (2) для отдельных белков и полная минус-нить РНК - матрица для синтеза геномной минус-РНК вируса (3). Нуклеокапсид связывается с матриксным белком и гликопротеин-модифицированной плазмалеммой. Выход вирионов - почкованием (4).

Двунитевые РНК-вирусы . Механизм репродукции этих вирусов (реовирусов и ротавирусов) сходен с репродукцией минус-однонитевых РНК-вирусов.
Особенность репродукции состоит в том, что образовавшиеся в процессе транскрипции плюс-нити функционируют не только как иРНК, но и участвуют в репликации: они являются матрицами для синтеза минус нитей РНК. Последние в комплексе с плюс-нитями РНК образуют геномные двунитевые РНК вирионов. Репликация вирусных нуклеиновых кислот этих вирусов происходит в цитоплазме клеток.
Ретровирусы (плюс-нитевые диплоидные РНК-вирусы, обратнотранскрибирующиеся), например вирус иммунодефицита человека (ВИЧ).

ВИЧ связывается гликопротеином gp120 (1) с рецептором CD 4 Т-хелперов и других клеток. После слияния оболочки


Рис. 4.11.

ЦПД - видимые под микроскопом морфологические изменения клеток (вплоть до их отторжения от стекла), возникающие в результате внутриклеточной репродукции вирусов.
ВИЧ с плазмалеммой клетки в цитоплазме освобождаются геномная РНК и обратная транскриптаза вируса, которая на матрице геномной РНК синтезирует комплементарную ми- нус-нить ДНК (линейная кДНК). С последней (2) копируется плюс-нить с образованием двойной нити кольцевой кДНК (3), которая интегрирует с хромосомной ДНК клетки. С рекомбинантной ДНК-провируса (4) синтезируются геномная РНК и иРНК, которые обеспечивают синтез компонентов и сборку вирионов. Вирионы выходят их клетки почкованием (5): сердцевина вируса «одевается» в модифицированную плазмалемму клетки.

Культивирование и индикация вирусов

Вирусы культивируют в организме лабораторных животных, в развивающихся куриных эмбрионах и культурах клеток (тканей). Индикацию вирусов проводят на основе следующих феноменов: цитопатогенного действия (ЦПД) вирусов, образования внутриклеточных включений, образования бляшек, реакции гемагглютинации, гемадсорбции или «цветной» реакции.


Рис. 4.13

Включения - скопление вирионов или отдельных их компонентов в цитоплазме или ядре клеток, выявляемые под микроскопом при специальном окрашивании. Вирус натуральной оспы образует цитоплазматические включения - тельца Гварниери; вирусы герпеса и аденовирусы - внутриядерные включения.


Рис. 4.14.

«Бляшки», или «негативные» колонии - ограниченные участки разрушенных вирусами клеток, культивируемых на питательной среде под агаровым покрытием, видимые как светлые пятна на фоне окрашенных живых клеток. Один вирион образует потомство в виде одной «бляшки». «Негативные» колонии разных вирусов отличаются по размеру, форме, поэтому метод «бляшек» используют для дифференциации вирусов, а также для определения их концентрации.

Рис. 4.12.


Рис.4.15.

Реакция гемагглютинации основана на способности некоторых вирусов вызывать агглютинацию (склеивание) эритроцитов за счет вирусных гликопротеиновых шипов - гемагглютининов.

Способность культур клеток, инфицированных вирусами, адсорбировать на своей поверхности эритроциты.


Рис. 4.16.

«Цветная» реакция оценивается по изменению цвета индикатора, находящегося в питательной среде культивирования. Если вирусы не размножаются в культуре клеток, то живые клетки в процессе метаболизма выделяют кислые продукты, что ведет к изменению pH среды и, соответственно, цвета индикатора. При продукции вирусов нормальный метаболизм клеток нарушается (клетки гибнут), и среда сохраняет свой первоначальный цвет.

Морфологию и структуру вирусов изучают с помощью электронного микроскопа, так как их размеры малы и сравнимы с толщиной оболочки бактерий. Форма вирионов может быть различной: палочковидной (вирус табачной мозаики), пулевидной (вирус бешенства), сферической (вирусы полиомиелита, ВИЧ), в виде сперматозоида (многие бактериофаги).

Размеры вирусов определяют с помощью электронной микроскопии, методом ультрафильтрации через фильтры с известным диаметром пор, методом ультрацентрифугирования. Одним из самых мелких вирусов является вирус полиомиелита (около 20 нм), наиболее крупным – натуральной оспы (около 350 нм).

Различают просто устроенные (например, вирус полиомиелита) и сложно устроенные (например, вирусы гриппа, кори) вирусы. У просто устроенных вирусов нуклеиновая кислота связана с белковой оболочкой, называемой капсидом (от лат. capsa – футляр). Капсид состоит из повторяющихся морфологических субъединиц – капсомеров. Нуклеиновая кислота и капсид, взаимодействуя друг с другом, образуют нуклеокапсид. У сложно устроенных вирусов капсид окружен дополнительной липопротеидной оболочкой – суперкапсидом (производное мембранных структур клетки-хозяина), имеющей «шипы». Для вирионов характерен спиральный, кубический и сложный тип симметрии капсида. Спиральный тип симметрии обусловлен винтообразной структурой нуклеокапсида, кубический тип симметрии – образованием изометрически полого тела из капсида, содержащего вирусную нуклеиновую кислоту.


Капсид и суперкапсид защищают вирионы от влияния окружающей среды, обусловливают избирательное взаимодействие (адсорбцию) с клетками, определяют антигенные и иммуногенные свойства вирионов. Внутренние структуры вирусов называются сердцевиной.В вирусологии используют следующие таксономические категории: семейство (название оканчивается на viridae), подсемейство (название оканчивается на virinae), род (название оканчивается на virus).

Однако названия родов и особенно подсемейств сформулированы не для всех вирусов. Вид вируса биноминального названия, как у бактерий, не получил.

В основу классификации вирусов положены следующие категории:

§ тип нуклеиновой кислоты (ДНК или РНК), ее структура, количество нитей (одна или две),

§ особенности воспроизводства вирусного генома;

§ размер и морфология вирионов, количество капсомеров и тип симметрии;

§ наличие суперкапсида;

§ чувствительность к эфиру и дезоксихолату;

§ место размножения в клетке;

§ антигенные свойства и пр.

Вирусы поражают позвоночных и беспозвоночных животных, а также растения и бактерии. Являясь основными возбудителями инфекционных заболеваний человека, вирусы также участвуют в процессах канцерогенеза, могут передаваться различными путями, в том числе через плаценту (вирус краснухи, цитомегаловирус и др.), поражая плод человека. Они могут приводить к постинфекционным осложнениям – развитию миокардитов, панкреатитов, иммунодефицитов и др.

Кроме обычных вирусов, известны и так называемые неканонические вирусы – прионы – белковые инфекционные частицы, являющиеся агентами белковой природы, имеющие вид фибрилл размером 10.20x100.200 нм. Прионы, по-видимому, являются одновременно индукторами и продуктами автономного гена человека или животного и вызывают у них энцефалопатии в условиях медленной вирусной инфекции (болезни Крейтц-фельдта.Якоба, куру и др.). Другими необычными агентами, близкими к вирусам, являются вироиды – небольшие молекулы кольцевой, суперспирализованной РНК, не содержащие белка, вызывающие заболевания у растений.

Морфологию и структуру вирусов изучают с помощью электронного микроскопа. Одним из самых мелких является вирус полиомиелита (около 20 нм), наиболее крупным - натуральной оспы (около 350 нм).

Вирусы состоят из следующих основных компонентов:

1. Сердцевина - генетический материал (ДНК либо РНК), который несет информацию о нескольких типах белков, необходимых для образования нового вируса.

2. Белковая оболочка, которую называют капсидом (от латинского capsa - ящик). Она часто построена из идентичных повторяющихся субъединиц - капсомеров. Капсомеры образуют структуры с высокой степенью симметрии.

3. Дополнительная липопротеидная оболочка (суперкапсид). Она образована из плазматической мембраны клетки-хозяина и встречается только у сравнительно больших вирусов (грипп, герпес).

Схематично строение РНК-содержащего вируса со спиральным типом симметрии и дополнительной липопротеидной оболочкой приведено слева на рисунке, справа показан его увеличенный поперечный разрез.

Капсид и дополнительная оболочка несут защитные функции, как бы оберегая нуклеиновую кислоту. Кроме того, они способствуют проникновению вируса в клетку. Полностью сформированный вирус называется вирионом.

Форма вирионов зависит от способа укладки белковых субъединиц в капсиде. Эта укладка может иметь спиральную или кубическую симметрию. Бактериофаги имеют смешанный или комбинированный тип симметрии.

У вируса табачной мозаики и РНК и белковые субъединицы располагаются по спирали и он имеет нитевидную или палочковидную форму. При такой симметрии белковый чехол лучше защищает нуклеиновую кислоту, но при этом требуется большее количество белка, чем при кубической симметрии. Истинное число субъединиц у разных вирионов равно 60 или кратно этой величине (420 субъединиц у вируса полиомы, 540 – у реовируса, 960 – у вируса герпеса, 1500 – у аденовируса).

Большинство вирусов с замкнутым чехлом обладает кубической симметрией. В ее основе лежат различные комбинации равносторонних треугольников (капсомеров), образованных шаровидными белковыми субъединицами. При этом могут образовываться тетраэдры, октаэдры и икосаэдры. Икосаэдры имеют 20 треугольных граней и 12 вершин. Это самая эффективная и экономичная симметрия. Поэтому сферические вирусы животных чаще всего имеют форму икосаэдра.

У вируса гриппа нуклеокапсид имеет палочковидную спиральную структуру, а суперкапсидная липопротеиновая оболочка придает вириону сферическую форму.

Число капсомеров для вирусов данного вида является постоянным и имеет диагностическое значение.

Просто устроенные вирусы имеют только капсид (вирус полиомиелита), сложноустроенные вирусы еще и суперкапсид (вирусы кори, гриппа).

В основу классификации вирусов положены следующие категории .

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

ВВЕДЕНИЕ

Сегодня ситуация на Земле такая, что каждый год открывают все новые и новые вирусы человека и животных, которые являются весьма опасными для здоровья человека. Люди перемещаются по странам и континентам, вступают друг с другом в различные контакты, мигрируют по экономическим, социальным, экологическим причинам. На территории планеты привнесены опасные вирусы лихорадки Рифт-Валли, Зика, Эбола, лихорадки долины Рифт, и некоторые другие. По большей части они достаточно близки по строению, и вызывают серьезные заболевания человека, являющиеся очень контагеозными и вирулентными, с высокой степенью летальности, что является серьезной угрозой для населения.

Необходимо отметить существующие эпидемии СПИДа и гепатита С, которые до настоящего времени не имеют лечения, а разрушают нашу иммунную систему с большой скоростью. В связи с этим, рассмотрение данного вопроса является весьма актуальным.

На вирусах изучаются вопросы генетики микробов и актуальные проблемы биохимии. Учёные всё более глубоко и успешно познают тончайшую структуру, биохимический состав и физиологические свойства этих ультрамикроскопических живых существ, их роль в природе, жизни человека, животного и растений. Развитие вирусологии связано с блестящими успехами молекулярной генетики. Изучение вирусов привело к пониманию тонкой структуры генов, расшифровки генетического кода, выявлению механизмов мутации. Вирусы широко применяются в работах генной инженерии. Способность вирусов приспосабливаться, вести себя непредсказуемо - не знает предела. Миллионы людей стали жертвами вирусов - возбудителей различных болезней. И всё-таки основные успехи вирусологии достигнуты в борьбе с конкретными болезнями и это даёт основание утверждать, что в нашем третьем тысячелетии вирусология займёт ведущее место.

Объектом нашего исследования является изучение неклеточной формы жизни.

Предметом исследования является изучение морфологии вирусов, и методах индикации.

Цель работы. На основе знаний особенностей биологии вирусов обосновать способы их культивирования, индикации, идентификации и методы лабораторной диагностики, вызываемых ими заболеваний.

Исходя из цели, были поставлены следующие задачи:

    Изучить литературные данные по морфологии вирусов.

    Ознакомиться с наиболее чувствительными методами диагностики вирусных инфекций.

Степень изученности данного вопроса В 1892 г. русский ученый-ботаник Д.И. Ивановский, изучая мозаичную болезнь листьев табака, установил, что заболевание это вызывается мельчайшими микроорганизмами, которые проходят через мелкопористые бактериальные фильтры. Эти микроорганизмы получили название вирусов (от лат. Virus - яд). Большой вклад в изучение вирусов внесли русские вирусологи: М.А. Морозов, Н.Ф. Гамалея, Л.А. Зильбер, М.П. Чумаков, А.А. Смородинцев, В.М. Жданов и др.

Личный вклад автора: путем изучения теоретического материала и лабораторных исследований автору удалось: трактовать морфологию и ультраструктуру вирусов. Ознакомиться с классификацией вирусов. Проанализировать особенности взаимодействия вирусов с живыми системами. Оценить результаты в живых системах. Проанализировать методы культивирования вирусов в лабораторных условиях. Трактовать современные методы лабораторной диагностики вирусных заболеваний.

Глава 1. МЕСТО ВИРУСОВ В БИОСФЕРЕ

1.1.Эволюционное происхождение

По мере изучения природы вирусов в первом полу столетии после их открытия Д.И.Ивановским (1892) формировались представления о вирусах как о мельчайших организмах. Многие ученые из других стран пытались первыми решить эту проблему. Эпитет “фильтрующийся” со временем был отброшен, так как стали известны фильтрующиеся формы или стадии обычных бактерий, а затем и фильтрующиеся виды бактерий. Наиболее правдоподобной и приемлемой является гипотеза о том, что вирусы произошли из “беглой” нуклеиновой кислоты, т.е. нуклеиновой кислоты, которая приобрела способность реплицироваться независимо от той клетки, из которой она возникла, хотя при этом предусматривается, что такая ДНК реплицируется с использованием структур этой или другой клеток. Эти участки высокомолекулярны, имеют большую молярную массу, активно участвуют в окислительных реакциях, необратимых изменениях, обладают большей скоростью восстановления органических процессов.

На основании опытов фильтрации через градуированные линейные фильтры были определены размеры вирусов. Это явилось большим прорывом для ученых вирусологов. Размер наиболее мелких из них оказался равным 20-30 нм, а наиболее крупных - 300-400 нм. В процессе дальнейшей эволюции у вирусов менялась больше форма, чем содержание.

Таким образом, вирусы, должно быть, произошли от клеточных организмов, и их не следует рассматривать, как примитивных предшественников клеточных организмов.

1.2.Строение и свойства вирусов

Размеры вирусов колеблются от 20 до 300 нм. В связи с этим, они могут быть рассмотрены только при помощи электронной микрокопии, форма их разнообразна: от нитевидных клубочков до сложных гексаэндрических фигур, с включениями ДНК или РНК. В среднем они в 50 раз меньше бактерий. Их нельзя увидеть в световой микроскоп, так как их длины меньше длины световой волны.

Вирусы состоят из различных компонентов:

а) сердцевина генетический материал (ДНК или РНК). Генетический аппарат вируса несет информацию о нескольких типах белков, которые необходимы для образования нового вируса: ген, кодирующий обратную транскриптазу и другие.

б) белковая оболочка, которую называют аспидом.

Оболочка часто построена из идентичных повторяющихся субъединиц - капсомеров. Капсомеры образуют структуры с высокой степенью симметрии.

в) дополнительная липопротеидная оболочка.

Она образована из плазматической мембраны клетки-хозяина. Она встречается только у сравнительно больших вирусов (грипп, герпес).

Полностью сформированная инфекционная частица называется вирионом.

Положения о том, что вирусы представляют собой полноценные организмы, позволило окончательно объединить все три названных группы вирусов - вирусы животных, растений и бактерий - в одну категорию, занимающую определенное место среди живых существ, населяющих нашу планету. Как и другие организмы, вирусы способны к размножению. Вирусы обладают определенной наследственностью, воспроизводя себе подобных. Данное положение получило подтверждение у ученых других стран, работающих над аналогичной проблемой. Наследственные признаки вирусов можно учитывать по спектру поражаемых хозяев и симптомам вызываемых заболеваний, а также по специфичности иммунных реакций естественных хозяев или искусственных иммунизируемых экспериментальных животных. Сумма этих признаков позволяет четко определить наследственные свойства любого вируса, и даже больше - его разновидностей, имеющих четкие генетические маркеры, например: нейтропность некоторых вирусов гриппа, сниженную патогенность у вакциональных вирусов и т.п.

1.3. Бактериофаги

Спустя 25 лет после открытия вируса, канадский ученый Феликс Д’Эрель, используя метод фильтрации, открыл новую группу вирусов, поражающих бактерии. Они так и были названы бактериофагами (или просто фагами). Многие ученые пытались повторить аналогичные экспериментальные исследования, но должных результатов не получили.

Заключённую в головке фага нуклеиновою кислоту защищает белковая оболочка. Она является главной субстанцией для жизнеобеспечения вируса. На нижнем своём конце головка переходит в отросток, который заканчивается шестиугольной «площадкой» (базальной пластинкой) с шестью короткими выростами (шипами) и шестью длинными фибриллами (нитями). Отросток окружён чехлом по всей длине, от головки до пластинки. Отростки являются рецепторами, узнающими рецепторы на поверхности бактериальных клеток, которые являются транспортными белками, осуществляющими процессы поступления и выделения веществ из клетки. Это взаимодействие носит высокоспецифичный характер. Благодаря чему, бактериофаг подходит как “ключ к замку”, только для определенного штамма бактериальных клеток. Бактериофаги играют важную эволюционную роль в формировании новых штаммов бактериальных клеток в связи со способностью умеренных фагов интегрироваться с ДНК клетки-хозяина, захватывать часть клеточной ДНК из одной бактериальной клетки и приносить её в геном другой клетки, в процессе трансдукции. Этот процесс обеспечивает обмен генетической информации между бактериями одного или разных штаммов, и заменяет отсутствующий у бактерий типичный половой процесс.

Жизненный цикл фага составляет 30 минут, но бывает временной отрезок увеличивается до 1 часа, или уменьшается до 15 минут, в зависимости от условий окружающей среды: температуры, влажности, давления, плотности атмосферных слоев. Освобождающиеся в процессе репродукции вирусные частицы участвуют в заражении здоровых клеток, что приводит к гибели всей популяции бактерий, актиномицетов, риккетсий, трепаносом, грибов рода Кандида.

Данное свойство бактериофагов разрушать бактерии используется для предупреждения и лечения бактериальных заболеваний, как правило желудочно-кишечного тракта, а именно сальмонеллеза, стафилококка и других энтеробактерий, некоторых других инфекций Через 10-15 минут после введения бактериофагов в организм возбудителя чумы, брюшного тифа, дизентерии, сальмонеллеза обезвреживаются. Таким образом, бактериофаги являются эффективными и безопасными с точки зрения здоровья человека источниками биологической защиты его организма. Страны Запада, заинтересованные в получении противо вирусологических материалов, вакцин, ферментов, вложили большие капиталы в разработку, внедрение, приобретение дорогостоящих медикаментов. Это было одним из направлений защитной политики государства

Но у этого метода есть серьезный недостаток. Бактерии более изменчивы (в плане защиты от фагов) чем бактериофаги, поэтому бактериальные клетки относительно быстро становятся нечувствительным к фагам. Этот способ защиты организма человека невозможно использовать, если кроме клеточной стенки бактериальные клетки имеют слизистые чехлы и слои и капсулы. Эти образования на поверхности бактерий надежно защищают их от проникновения бактериофагов в клетки, так как они неспособны адсорбироваться на их поверхности, а это обязательные условия для начала проникновения вируса в бактериальную клетку.

ГЛАВА 2.ЛАБОРАТОРНАЯ ДИАГНОСТИКА

Лабораторные исследования играют важную роль в установлении диагноза инфекционных болезней. История развития лабораторной диагностики достаточно обширна. В начале своего исторического развития, в качестве основного лабораторного метода исследования использовали организмы животных. Диагностика была процессом трудоемким и дорогостоящим. И о наличии вирусной инфекции судили по характеру поражения внутренних органов животных. Этот организменный уровень исследования, был заменен, когда в лабораторную практику были введены куриные эмбрионы. Это стало возможным, благодаря тому, что в 1941 году американский вирусолог Хернст обнаружил феномен гемагглютинации—это способность вирусов склеивать эритроциты, которые являются переносчиками кислорода и выполняют ряд важнейших функций. Данную проблему изучают многие ученые. Эта модель стала основой для изучения взаимодействия вируса и клетки. В основе механизма реакции гемагглютинации лежит механизм вирусной адсорбции на поверхностной мембране эритроцитов, в результате чего происходит их склеивание, так как одна вирусная частица может захватывать несколько эритроцитов. Открытие возможности культивирования клеток в искусственных условиях, явилось революционным событием, послужившим для выделения, диагностики и изучения большого количества вирусов. Появилась возможность получения культуральных вакцин.

Лабораторные методы диагностики различны по чувствительности и специфичности.

2.1 Микробиологический метод

Микробиологический метод диагностики основан на обнаружении возбудителей в биологическом материале. Используют светооптическую и электронную микроскопию.

Микробиологический метод широко применяют в диагностике инфекционных болезней бактериальной, протозойной этиологии и, реже, вирусных болезней.

Лабораторная диагностика инфекционных заболеваний проводится по трем основным направлениям:

    поиск возбудителя в материале, взятом у пациента (фекалий, мочи, мокроты, крови, гнойного отделяемого и т.д.);

    определение специфических антител в сыворотке - серологической диагностики;

    определение человеческого тела повышенная чувствительность к инфекционным агентам - аллергический метод.

Для выявления инфекционного агента и его идентификацию (определение вида возбудителя) используют три метода: микроскопические, микробиологические (бактериологические) и биологические.

Микроскопический метод позволяет обнаружить возбудитель непосредственно в материале, взятом у пациента. Этот метод имеет решающее значение для диагностики гонореи, туберкулеза, заболеваний, вызванных простейшими: малярии, лейшманиоза, балантидиаза, амебиаза. Особенности микроскопического метода для этих инфекций вызваны возбудителями значительных морфологических различий этих заболеваний. Особенности морфологии патогенных микроорганизмов играют важную роль в диагностике. Тем не менее, микроскопический метод не позволяет диагноз при таких инфекциях, таких как тиф и паратиф, дизентерия, потому что они различить их агенты морфологически невозможно (все грамотрицательные палочки). Для того, чтобы различать одинаковую морфологию микроорганизмов, они должны получить в чистой культуре и определить, что можно сделать с помощью микробиологического (бактериологического) метода исследования.

Эффективность микроскопического метода определяется его чувствительностью и специфичностью. Специфичность ограничивается возможной ошибочной идентификацией возбудителя из-за артефактов. Кроме того, при проведении микроскопического исследования имеют значение техника исследования.

2.2. Бактериологический метод

Применение бактериологического метода дает возможность выделить возбудителя в чистой культуре из материала, полученного от больного, и идентифицировать его на основании изучения комплекса свойств. Бактериологические лаборатории призваны осуществлять диагностику бактериологических болезней, контролировать заболевания животных, участвовать в организации и проведении противоэпидемиологических мероприятий и ликвидаций вирусных болезней. Большинство бактерий способны к культивированию на различных искусственных питательных средах. Основным критериями, которые должны обладать питательные среды это прежде всего их питательность. Достаточное количество белков, ферментов, ростовых гормонов, которые стабилизируют условия питательности и хорошего обогащения среды. Основным уплотняющим агентом для среды является полисахарид- агар-агар. С его помощью питательные среды являются более плотными, что существенно сыграло важную роль в культивировании микроорганизмов, поэтому бактериологический метод имеет важное значение в диагностике многих инфекционных болезней.

В случае получения положительного результата бактериологический метод позволяет определить чувствительность выделенного возбудителя к антимикробным препаратам. Однако эффективность указанного исследования зависит от многих параметров, в частности от условий сбора материала и его транспортировки в лабораторию. Микробиологический метод заключается в посеве исследуемого материала на питательную среду, чистой культуры изоляции и идентификации возбудителя. Если инфекционные агенты (риккетсии, вирусы, простейшие, некоторые) не растут на искусственных средах или необходимо изолировать возбудитель микробных ассоциаций, а затем использовать метод заражения восприимчивых животных биологии.

2.3.Вирусологический метод

Вирусологический метод включает два основных этапа: выделение вирусов и их идентификацию. Материалами могут быть кровь, другие биологические и патологические жидкости, биоптаты органов и тканей.

Вирусологическое исследование крови часто проводят с целью диагностики арбовирусных инфекций. Если необходимо использовать готовую структуры клеток и среды для них, отпадает необходимость в других биоматериалов. Вирусологические исследования с использованием культур клеток стоят на 2 месте по доступности для лабораторных испытаний. В слюне могут быть обнаружены вирусы бешенства, эпидемического паротита, простого герпеса. Носоглоточные смывы служат для выделения возбудителей гриппа и других ОРВИ, кори. В смывах с конъюнктивы обнаруживают аденовирусы. Из фекалий выделяют различные энтеро-, адено-, рео- и ротавирусы.

Для выделения вирусов используют культуры клеток, куриные эмбрионы, иногда лабораторных животных.Страны Запада, заинтересованные в получении противовирусологических материалов, вакцин, ферментов, вложили большие капиталы в разработку, внедрение, приобретение,дорогостоящих медикаментов. Это было одним из направлений защитной политики государства Большинство патогенных вирусов отличает наличие тканевой и типовой специфичности", например, полиовирус репродуцируется только в клетках приматов, поэтому для выделения определенного вируса используют соответствующую культуру ткани. Для выделения неизвестного возбудителя целесообразно одномоментно заражать 3—4 культуры клеток, предполагая, что одна из них может оказаться чувствительной. Наличие вируса в зараженных культурах определяют по развитию специфической дегенерации клеток, т.е. цитопатогенному действию, обнаружению внутриклеточных включений, а также на основе выявления специфического антигена методом иммунофлюоресценции, положительных реакций гемадсорбции и гемагглютинации. Эмбрионы птиц с их малодифференцированными тканями пригодны для культивирования очень многих вирусов. Чаще всего используют эмбрионы кур. При размножении в эмбрионах вирусы могут вызвать их гибель (арбовирусы), появление изменений на хорион-аллантоисной оболочке (оспенные вирусы) или в теле эмбриона, накопление в эмбриональных жидкостях гемагглютининов (вирусы гриппа, паротита) и комплементсвязывающего вирусного антигена.

Вирусы идентифицируют с помощью иммунологических методов: реакции торможения гемагглютинации, связывания комплемента, нейтрализации, преципитации в геле, иммунофлюоресценции.

2.4 Биологический метод

Биологический метод состоит в заражении различным материалом (клиническим, лабораторным) лабораторных животных для индикации возбудителя, а также для определения некоторых свойств микроорганизмов, характеризующих их патогенность (токсигенность, токсичность, вирулентность). В качестве лабораторных животных используют белых мышей, белых крыс, морских свинок, кроликов и др.

Воспроизведение заболевания у животного — абсолютное доказательство патогенности выделенного микроорганизма (в случае бешенства, столбняка и др.). Поэтому биологическая проба на животных является ценным и достоверным диагностическим методом, особенно при тех инфекциях, возбудители которых в исследуемых биологических средах организма человека содержатся в малых концентрациях и плохо или медленно растут на искусственных средах.

2.5 Иммунологический метод

Иммунологический метод (серологический) включает исследования сыворотки крови, а также других биологических субстратов для выявления специфических антител и антигенов. Классическая серодиагностика основана на определении антител к выявленному или предполагаемому возбудителю. Положительный результат реакции свидетельствует о наличии в исследуемой сыворотке крови антител к антигенам возбудителя, отрицательный результат указывает на отсутствие таковых. Обнаружения в исследуемой сыворотке крови антител к возбудителю ряда инфекционных болезней недостаточно для постановки диагноза, поскольку оно может отражать наличие постинфекционного или поствакцинального иммунитета, поэтому исследуют «парные» сыворотки крови, первую, взятую в первые дни болезни, и вторую, взятую с интервалом 7—10 дней. В этом случае оценивают динамику нарастания уровня антител.

Диагностически значимо увеличение титра антител в исследуемой сыворотке крови не менее чем в 4 раза относительно первоначального уровня. Этот феномен называют сероконверсией. Белковые компоненты встраиваются самостоятельно в пептидные цепи. При редких инфекционных болезнях, а также вирусных гепатитах, ВИЧ-инфекции и некоторых других факт наличия антител свидетельствует об инфицированности пациента и имеет диагностическое значение.

Кроме определения титра антител, при проведении серологических исследований можно установить изотип антител. Известно, что при первой встрече организма человека с возбудителем в остром периоде болезни выявляют более быстрое нарастание антител, принадлежащих к IgM, уровень которых, достигая максимального значения, затем снижается. В более поздние сроки болезни повышается количество IgG-антител, которые дольше сохраняются и определяются в периоде ре-конвалесценции. При повторной встрече с возбудителем благодаря иммунологической памяти реакции гуморального иммунитета проявляются более быстрой продукцией IgG-анти-тел, а антитела класса М вырабатываются в незначительном количестве. Обнаружение IgM-антител свидетельствует о наличии текущего инфекционного процесса, а наличие IgG-антител — о перенесенной в прошлом инфекции или поствакцинальном иммунитете.

Учитывая особенности первичного и вторичного иммунного ответа, анализ соотношения IgM- и IgG-антител позволяет в некоторых случаях дифференцировать стадию инфекционного процесса (разгар заболевания, реконвалесценция, рецидив). Например, в случае вирусного гепатита А (ГА) надежным методом диагностики служит определение анти-HAV IgM-антител в сыворотке крови. Их выявление свидетельствует о текущей или недавно возникшей HAV-инфекции. Белковые компоненты встраиваются самостоятельно в пептидные цепи.

Серологическое исследование для обнаружения антител при инфекционных заболеваниях является более доступным методом лабораторной диагностики, чем выделение возбудителя. Иногда положительная серологическая реакция служит единственным доказательством встречи и взаимодействия организма с возбудителем соответствующего инфекционного заболевания. Кроме того, ряд заболеваний со сходной клинической картиной (например, риккетсиозы, энтеровирусные инфекции) могут быть дифференцированы лишь серологически, что отражает значение серологических методов в диагностике инфекционных болезней.

ЗАКЛЮЧЕНИЕ

ИСПОЛЬЗОВАННАЯ ЛИТЕРАТУРА

1. Адрианов В. В., ВасилюкН. А. «Общая и частная вирусология» 27 (4): 50—56. 2012.

2. Балин Р.М., Баранова А.П. «Бактериофаги» - М.: Медицина, 1997. - 236 с.

3. Бактериологический метод. / Под ред. А.М. Вейна. — М.: МИА, 2003. — 752 с.

4. Жемайтите Д.И. Лабораторная диагностика инфекционных заболеваний. В кн: Анализ вирусов. - Вильнюс, 1982. - С. 22-32

5. Клецкин С.З. Вирусологический анализ. - М.: ВНИИМИ, 1979. -116 с.

6. Миронова Т.Ф., Миронов В.А. Клинический aнализ вирусов. - Челябинск, 1998. - 162 с.

7. Нагорная Н.В., Мустафина А.А. Инфекционные вирусы. Часть I // Здоровье ребенка. — 2007. — № 5 (8).

8. Oкунева Г.Н., Власов Ю.А., Шевелева Л.Т. Микробиология. - Новосибирск: Наука, 2000. - 280 с.

9. Рясик, Ю. В. Вирусы / Ю. В. Рясик, В. И. Циркин // Сибирский медицинский журнал. 2007. - Т. 72. -№5.-С. 49-52.

10. Сметнев, А. С. Бактериофаги. / А. С. Сметнев, О. И. Жаринов, В. Н. Чубучный // Кардиология. 1999. - № 4 . - С. 49-51.

11. Вирус иммунодефицита./ А. Р. Наниева и др. // Здоровье населения и среда обитания. 2011. - № 4. - С. 22-24.

12. Фокин, В. Ф. Вопросы вирусологии / В. Ф. Фокин, Н. В. Пономарева // Функциональная вирусология: хрестоматия / под ред. Н. Н. Боголепова, В. Ф. Фокина. -М.: Научный мир, 2004. С. 349-368.

13. Фокин, В. Ф. Строение вирусов / В. Ф. Фокин, Н. В. Пономарева. М.: Антидор, 2003. - 288 с.