То линии индукции магнитного поля будут проходить через этот контур. Линия магнитной индукции это магнитная индукция в каждой точке этой линии. То есть, мы можем говорить о том, что линии магнитной индукции это поток вектора индукции по пространству, ограниченному и описываемому этими линиями. Можно сказать короче магнитный поток.

В общих чертах с понятием «магнитный поток» знакомятся в девятом классе. Более детальное рассмотрение с выводом формул и пр., относится к курсу физики старших классов. Итак, магнитный поток это определенное количество индукции магнитного поля в какой-либо области пространства.

Направление и количество магнитного потока

Магнитный поток имеет направление и количественное значение. В нашем случае контура с током, говорят, что этот контур пронизывает определенный магнитный поток. При этом понятно, что чем больше по размеру будет контур, тем больший магнитный поток пройдет сквозь него.

То есть, магнитный поток зависит от площади пространства, через которую он проходит. Если мы имеем неподвижную рамку определенного размера, пронизываемую постоянным магнитным полем, то магнитный поток, проходящий через эту рамку, будет постоянным.

Если же мы увеличим силу магнитного поля, то соответственно увеличится магнитная индукция. Величина магнитного потока также возрастет, причем пропорционально возросшей величине индукции. То есть, магнитный поток зависит от величины индукции магнитного поля и площади пронизываемой поверхности.

Магнитный поток и рамка - рассмотрим пример

Рассмотрим вариант, когда наша рамка расположена перпендикулярно магнитному потоку. Площадь, ограничиваемая этой рамкой, будет максимальна по отношению к проходящему через нее магнитному потоку. Следовательно, величина потока будет максимальной для данной величины индукции магнитного поля.

Если же мы начнем вращать рамку относительно направления магнитного потока, то площадь, через которую может проходить магнитный поток, будет уменьшаться, следовательно, будет уменьшаться величина магнитного потока через эту рамку. Причем, она будет уменьшаться вплоть до нуля, когда рамка станет расположена параллельно линиям магнитной индукции.

Магнитный поток будет как бы скользить мимо рамки, он не будет ее пронизывать. В таком случае и действие магнитного поля на рамку с током будет равно нулю. Таким образом, мы можем вывести следующую зависимость:

Магнитный поток, пронизывающий площадь контура, меняется при изменении модуля вектора магнитной индукции B, площади контура S и при вращении контура, то есть при изменении его ориентации к линиям индукции магнитного поля.

Среди многих определений и понятий, связанных с магнитным полем, следует особо выделить магнитный поток, обладающий определенной направленностью. Это свойство широко используется в электронике и электротехнике, в конструкциях приборов и устройств, а также при расчете различных схем.

Понятие магнитного потока

В первую очередь необходимо точно установить, что называется магнитным потоком. Данную величину следует рассматривать в сочетании с однородным магнитным полем. Оно является однородным в каждой точке, обозначенного пространства. Под действие магнитного поля попадает определенная поверхность, имеющая какую-то установленную площадь, обозначаемую символом S. Линии поля воздействуют на эту поверхность и пересекают ее.

Таким образом, магнитный поток Ф, пересекающий поверхность с площадью S, состоит из определенного количества линий, совпадающих с вектором В и проходящих через эту поверхность.

Этот параметр можно найти и отобразить в виде формулы Ф = BS cos α, в которой α является углом между нормальным направлением к поверхности S и вектором магнитной индукции В. Исходя из этой формулы, можно определить магнитный поток с максимальным значением при котором cos α = 1, а положение вектора В станет параллельно нормали, перпендикулярной поверхности S. И, наоборот, магнитный поток будет минимальным, если вектор В будет расположен перпендикулярно нормали.

В данном варианте векторные линии просто скользят по плоскости и не пересекают ее. То есть, поток учитывается только по линиям вектора магнитной индукции, пересекающим конкретную поверхность.

Для нахождения данной величины используется вебер или вольт-секунды (1 Вб = 1 В х 1 с). Этот параметр может измеряться и в других единицах. Меньшей величиной является максвелл, составляющий 1 Вб = 10 8 мкс или 1 мкс = 10 -8 Вб.

Энергия магнитного поля и поток магнитной индукции

Если по проводнику пропустить электрический ток, то вокруг него образуется магнитное поле, обладающее энергией. Ее происхождение связано с электроэнергией источника тока, которая частично расходуется для преодоления ЭДС самоиндукции, возникающей в цепи. Это так называемая собственная энергия тока, за счет которой и образуется . То есть, энергии поля и тока будут равны между собой.

Значение собственной энергии тока выражает формула W = (L x I 2)/2. Это определение считается равной той работе, которая совершается источником тока, преодолевающим индуктивность, то есть, ЭДС самоиндукции и создающим ток в электрической цепи. Когда ток прекращает действовать энергия магнитного поля не пропадает бесследно, а выделяется, например, в виде дуги или искры.

Магнитный поток, возникающий в поле, известен еще и как поток магнитной индукции с положительным или отрицательным значением, направление которого условно обозначено вектором. Как правило, проходит этот поток через контур, по которому протекает электрический ток. При положительном направлении нормали относительно контура, направление движения тока есть величина, определяемая в соответствии с . В этом случае магнитный поток, создаваемый контуром с электрическим током, и проходящий через этот контур, всегда будет иметь значение больше нулевого. На это указывают и практические измерения.

Обычно измеряется магнитный поток в единицах, установленных международной системой СИ. Это уже известный вебер, представляющий собой величину потока, проходящего через плоскость с площадью 1 м2. Данная поверхность размещается перпендикулярно по отношению к силовым линиям магнитного поля с однородной структурой.

Это понятие хорошо описывает теорема Гаусса. В ней отражено отсутствие магнитных зарядов, поэтому индукционные линии всегда представляются замкнутыми или уходящими в бесконечность без начала и конца. То есть, магнитный поток, проходящий через любые виды замкнутых поверхностей, всегда равен нулю.


Электрический дипольный момент
Электрический заряд
Электрическая индукция
Электрическое поле
Электростатический потенциал См. также: Портал:Физика

Магни́тный пото́к - физическая величина, равная произведению модуля вектора магнитной индукции \vec B на площадь S и косинус угла α между векторами \vec B и нормалью \mathbf{n}. Поток \Phi_B как интеграл вектора магнитной индукции \vec B через конечную поверхность S определяется через интеграл по поверхности:

{{{1}}}

При этом векторный элемент dS площади поверхности S определяется как

{{{1}}}

Квантование магнитного потока

Значения магнитного потока Φ , проходящего через

Напишите отзыв о статье "Магнитный поток"

Ссылки

Отрывок, характеризующий Магнитный поток

– C"est bien, mais ne demenagez pas de chez le prince Ваsile. Il est bon d"avoir un ami comme le prince, – сказала она, улыбаясь князю Василию. – J"en sais quelque chose. N"est ce pas? [Это хорошо, но не переезжайте от князя Василия. Хорошо иметь такого друга. Я кое что об этом знаю. Не правда ли?] А вы еще так молоды. Вам нужны советы. Вы не сердитесь на меня, что я пользуюсь правами старух. – Она замолчала, как молчат всегда женщины, чего то ожидая после того, как скажут про свои года. – Если вы женитесь, то другое дело. – И она соединила их в один взгляд. Пьер не смотрел на Элен, и она на него. Но она была всё так же страшно близка ему. Он промычал что то и покраснел.
Вернувшись домой, Пьер долго не мог заснуть, думая о том, что с ним случилось. Что же случилось с ним? Ничего. Он только понял, что женщина, которую он знал ребенком, про которую он рассеянно говорил: «да, хороша», когда ему говорили, что Элен красавица, он понял, что эта женщина может принадлежать ему.
«Но она глупа, я сам говорил, что она глупа, – думал он. – Что то гадкое есть в том чувстве, которое она возбудила во мне, что то запрещенное. Мне говорили, что ее брат Анатоль был влюблен в нее, и она влюблена в него, что была целая история, и что от этого услали Анатоля. Брат ее – Ипполит… Отец ее – князь Василий… Это нехорошо», думал он; и в то же время как он рассуждал так (еще рассуждения эти оставались неоконченными), он заставал себя улыбающимся и сознавал, что другой ряд рассуждений всплывал из за первых, что он в одно и то же время думал о ее ничтожестве и мечтал о том, как она будет его женой, как она может полюбить его, как она может быть совсем другою, и как всё то, что он об ней думал и слышал, может быть неправдою. И он опять видел ее не какою то дочерью князя Василья, а видел всё ее тело, только прикрытое серым платьем. «Но нет, отчего же прежде не приходила мне в голову эта мысль?» И опять он говорил себе, что это невозможно; что что то гадкое, противоестественное, как ему казалось, нечестное было бы в этом браке. Он вспоминал ее прежние слова, взгляды, и слова и взгляды тех, кто их видал вместе. Он вспомнил слова и взгляды Анны Павловны, когда она говорила ему о доме, вспомнил тысячи таких намеков со стороны князя Василья и других, и на него нашел ужас, не связал ли он уж себя чем нибудь в исполнении такого дела, которое, очевидно, нехорошо и которое он не должен делать. Но в то же время, как он сам себе выражал это решение, с другой стороны души всплывал ее образ со всею своею женственной красотою.

В ноябре месяце 1805 года князь Василий должен был ехать на ревизию в четыре губернии. Он устроил для себя это назначение с тем, чтобы побывать заодно в своих расстроенных имениях, и захватив с собой (в месте расположения его полка) сына Анатоля, с ним вместе заехать к князю Николаю Андреевичу Болконскому с тем, чтоб женить сына на дочери этого богатого старика. Но прежде отъезда и этих новых дел, князю Василью нужно было решить дела с Пьером, который, правда, последнее время проводил целые дни дома, т. е. у князя Василья, у которого он жил, был смешон, взволнован и глуп (как должен быть влюбленный) в присутствии Элен, но всё еще не делал предложения.

Пусть в некоторой малой области пространства существует магнитное поле, которое можно считать однородным, то есть в этой области вектор магнитной индукции постоянен, как по величине, так и по направлению.
 Выделим малую площадку площадью ΔS , ориентация которой задается единичным вектором нормали n (рис. 445).

рис. 445
 Магнитный поток через эту площадку ΔФ m определяется как произведение площади площадки на нормальную составляющую вектора индукции магнитного поля

Где

скалярное произведение векторов B и n ;
B n − нормальная к площадке компонента вектора магнитной индукции.
 В произвольном магнитном поле магнитный поток через произвольную поверхность, определяется следующим образом (рис. 446):

рис. 446
− поверхность разбивается на малые площадки ΔS i (которые можно считать плоскими);
− определяется вектор индукции B i на этой площадке (который в пределах площадки можно считать постоянным);
− вычисляется сумма потоков через все площадки, на которые разбита поверхность

 Эта сумма называется потоком вектора индукции магнитного поля через заданную поверхность (или магнитным потоком).
 Обратите внимание, что при вычислении потока суммирование проводится по точкам наблюдения поля, а не по источникам, как при использовании принципа суперпозиции. Поэтому магнитный поток является интегральной характеристикой поля, описывающей его усредненные свойства на всей рассматриваемой поверхности.
 Трудно найти физический смысл магнитного потока, как и для иных полей это полезная вспомогательная физическая величина. Но в отличие от других потоков, магнитный поток настолько часто встречается в приложениях, что в системе СИ удостоился «персональной» единицы измерения − Вебер 2 : 1 Вебер − магнитный поток однородного магнитного поля индукции 1 Тл через площадку площадью 1 м 2 ориентированную перпендикулярно вектору магнитной индукции.
 Теперь докажем простую, но чрезвычайно важную теорему о магнитном потоке через замкнутую поверхность.
 Ранее мы установили, что силовые любого магнитного поля являются замкнутыми, уже из этого следует, что магнитный поток, через любую замкнутую поверхность равен нулю.

Тем не менее, приведем более формальное доказательство этой теоремы.
 Прежде всего, отметим, что для магнитного потока справедлив принцип суперпозиции: если магнитное поле создано несколькими источниками, то для любой поверхности поток поля, созданного системой элементов тока, равен сумме потоков полей, созданных каждым элементом тока в отдельности. Это утверждение следует непосредственно из принципа суперпозиции для вектора индукции и прямо пропорциональной связью между магнитным потоком и вектором магнитной индукции. Следовательно достаточно доказать теорему для поля, созданного элементом тока, индукция которого определяется по закону Био-Саварра-Лапласа. Здесь для нас важна структура поля, обладающего осевой круговой симметрией, значение модуля вектора индукции несущественно.
 Выберем в качестве замкнутой поверхности поверхность бруска, вырезанного, как показано на рис. 447.

рис. 447
 Магнитный поток отличен от нуля только через его две боковые грани, но эти потоки имеют противоположные знаки. Вспомним, что для замкнутой поверхности выбирают внешнюю нормаль, поэтому на одной из указанных граней (передней) поток положительный, а на задней отрицательный. Причем модули этих потоков равны, так как распределение вектора индукции поля на этих гранях одинаково. Данный результат не зависит от положения рассмотренного бруска. Произвольное тело можно разбить на бесконечно малые части, каждая из которых подобна рассмотренному бруску.
 Наконец, сформулируем еще одно важное свойство потока любого векторного поля. Пусть произвольная замкнутая поверхность ограничивает некоторое тело (рис. 448).

рис. 448
 Разобьем это тело на две части, ограниченные частями исходной поверхности Ω 1 и Ω 2 , и замкнем их общей границей раздела тела. Сумма потоков через эти две замкнутые поверхности равна потоку через исходную поверхность! Действительно сумма потоков через границу (один раз для одного тела, другой раз для другого) равна нулю, так как в каждом случае надо брать разные, противоположные нормали (каждый раз внешнюю). Аналогично можно доказать утверждение для произвольного разбиения тела: если тело разбито на произвольное число частей, то поток через поверхность тела равен сумме потоков через поверхности всех частей разбиения тела. Это утверждение очевидно для потока жидкости.
 Фактически мы доказали, что если поток векторного поля равен нулю через некоторую поверхность ограничивающее малый объем, то этот поток равен нулю через любую замкнутую поверхность.
 Итак, для любого магнитного поля справедлива теорема о магнитном потоке: магнитный поток через любую замкнутую поверхность равен нулю Ф m = 0.
 Ранее мы рассматривали теоремы о потоке для поля скоростей жидкости и электростатического поля. В этих случаях поток через замкнутую поверхность полностью определялся точечными источниками поля (истоками и стоками жидкости, точечными зарядами). В общем случае наличие ненулевого потока через замкнутую поверхность свидетельствует о наличии точечных источников поля. Следовательно, физическим содержанием теоремы о магнитном потоке является утверждение об отсутствии магнитных зарядов.

Если вы хорошо разобрались в данном вопросе и сумеете объяснить и отстоять свою точку зрения, то можете формулировать теорему о магнитном потоке и так: «Еще никто не нашел монополя Дирака».

Следует особо подчеркнуть, что, говоря об отсутствии источников поля, мы имеем виду именно точечных источников, подобных электрическим зарядам. Если провести аналогию с полем движущейся жидкости, электрические заряды подобны точкам, из которых вытекает (или втекает) жидкость, увеличивая или уменьшая ее количество. Возникновение магнитного поля, благодаря движению электрических зарядов подобно движению тела в жидкости, которое приводит к появлению вихрей, не изменяющих общего количества жидкости.

Векторные поля, для которых поток через любую замкнутую поверхность равен нулю получили красивое, экзотическое название − соленоидальные . Соленоидом называется проволочная катушка, по которой можно пропускать электрический ток. Такая катушка может создавать сильные магнитные поля, поэтому термин соленоидальный означает «подобный полю соленоида», хотя можно было назвать такие поля попроще − «магнитоподобные». Наконец такие поля еще называют вихревыми , подобно полю скоростей жидкости, образующей в своем движении всевозможные турбулентные завихрения.

Теорема о магнитном потоке имеет большое значение, она часто используется при доказательстве различных свойств магнитных взаимодействий, с ней мы будем встречаться неоднократно. Так, например, теорема о магнитном потоке доказывает, что вектор индукции магнитного поля, создаваемого элементом, не может иметь радиальной составляющей, иначе поток через цилиндрическую поверхность коаксиальную с элементом тока был бы отличен от нуля.
 Теперь проиллюстрируем применение теоремы о магнитном потоке для расчета индукции магнитного поля. Пусть магнитное поле создается кольцом с током, которое характеризуется магнитным моментом p m . Рассмотрим поле вблизи оси кольца на расстоянии z от центра, значительно большем радиуса кольца (рис. 449).

рис. 449
 Ранее мы получили формулу для индукции магнитного поля на оси для больших расстояний от центра кольца

 Мы не допустим большой ошибки, если будем считать, что такое же значение имеет вертикальная (пусть ось кольца вертикальна) компонента поля в пределах небольшого кольца радиуса r , плоскость которого перпендикулярна оси кольца. Так как вертикальная компонента поля изменяется с изменением расстояния, то неизбежно должны присутствовать радиальные компоненты поля, иначе не будет выполняться теорема о магнитном потоке! Оказывается этой теоремы и формулы (3) достаточно, чтобы найти эту радиальную компоненту. Выделим тонкий цилиндр толщиной Δz и радиуса r , нижнее основание которого находится на расстоянии z от центра кольца, соосный с кольцом и применим теорему о магнитном потоке к поверхности этого цилиндра. Магнитный поток через нижнее основание равен (учтите, что вектора индукции и нормали здесь противоположны)

где B z (z) z ;
поток через верхнее основание равен

где B z (z + Δz) − значение вертикальной компоненты вектора индукции на высоте z + Δz ;
поток через боковую поверхность (из осевой симметрии следует, что модуль радиальной составляющей вектора индукции B r на этой поверхности постоянен):

 По доказанной теореме сумма этих потоков равна нулю, поэтому справедливо уравнение

из которого определим искомую величину

 Осталось использовать формулу (3) для вертикальной составляющей поля и провести необходимые вычисления 3


 Действительно, убывание вертикальной компоненты поля приводит к появлению горизонтальных компонент: уменьшение вытекания через основания приводит к «течи» через боковую поверхность.
 Таким образом, мы доказали «криминальную теорему»: если через один конец трубы вытекает меньше, чем вливают в нее с другого конца, то где-то воруют через боковую поверхность.

1 Достаточно взять текст с определением потока вектора напряженности электрического поля и изменить обозначения (что здесь и сделано).
2 Названа в честь немецкого физика (члена Петербургской академии наук) Вильгельма Эдуарда Вебера (1804 – 1891)
3 Самые грамотные могут увидеть в последней дроби производную функции (3) и элементарно ее вычислить, нам же придется очередной раз воспользоваться приближенной формулой (1 + x) β ≈ 1 + βx.

Правило правой руки или буравчика:

Направление силовых линий магнитного поля и направление создающего его тока связаны между собой известным правилом правой руки или буравчика, которые ввел еще Д.Максвелл и иллюстрируется следующими рисунками:

Мало кто знает, что буравчик - это инструмент для бурения-сверления отверстий в дереве. Поэтому более понятно можно это правило назвать правилом винта, шурупа или штопора. Однако хвататься за провод как на рисунке иногда опасно для жизни!

Магнитная индукция B :

Магнитная индукция - является основной фундаментальной характеристикой магнитного поля, аналогичной вектору напряженности электрического поля E . Вектор магнитной индукции всегда направлен по касательной к магнитной линии и показывает ее направление и силу. За единицу магнитной индукции в B = 1Тл принимается магнитная индукция однородного поля, в котором на участок проводника длиной в l = 1 м, при силе тока в нем в I = 1 А, действует со стороны поля максимальная сила Ампера - F = 1 H. Направление силы Ампера определяется по правилу левой руки . В системе СГС магнитная индукция поля измеряется в гауссах (Гс), в системе СИ - в теслах (Тл).

Напряженность магнитного поля H :

Еще одной характеристикой магнитного поля является напряженность , которая является аналогом вектора электрического смещения D в электростатике. Определяется по формуле:

Напряженность магнитного поля - величина векторная, является количественной характеристикой магнитного поля и не зависит от магнитных свойств среды. В системе СГС напряженность магнитного поля измеряется в эрстедах (Э), в системе СИ - в амперах на метр (А/м).

Магнитный поток Ф:

Магнитный поток Ф - скалярная физическая величина, характеризующая число линий магнитной индукции, пронизывающих замкнутый контур. Рассмотрим частный случай. В однородном магнитном поле , модуль вектора индукции которого равен ∣В ∣, помещен плоский замкнутый контур площадью S. Нормаль n к плоскости контура составляет угол α с направлением вектора магнитной индукции B . Магнитным потоком через поверхность называется величина Ф, определяемая соотношением:

В общем случае магнитный поток определяется как интеграл вектора магнитной индукции B через конечную поверхность S.

Стоит отметить, что магнитный поток через любую замкнутую поверхность равен нулю (теорема Гаусса для магнитных полей). Это означает, что силовые линии магнитного поля нигде не обрываются т.е. магнитное поле имеет вихревую природу, а также что невозможно существование магнитных зарядов, которые создавали бы магнитное поле подобно тому, как электрические заряды создают электрическое поле. В СИ единицей магнитного потока является Вебер (Вб), в системе СГС - максвелл (Мкс); 1 Вб = 10 8 Мкс.

Определение индуктивности:

Индуктивность - коэффициент пропорциональности между электрическим током, текущим в каком-либо замкнутом контуре, и магнитным потоком, создаваемым этим током через поверхность, краем которой является этот контур.

Иначе, индуктивность - коэффициент пропорциональности в формуле самоиндукции .

В системе единиц СИ индуктивность измеряется в генри (Гн). Контур обладает индуктивностью в один генри, если при изменении тока на один ампер в секунду на выводах контура будет возникать ЭДС самоиндукции в один вольт.

Термин «индуктивность» был предложен Оливером Хевисайдом – английским ученым-самоучкой в 1886 году. Говоря просто, индуктивность это свойство проводника с током накапливать энергию в магнитном поле, эквивалентна емкости для электрического поля. Она не зависит от величины тока, а только от формы и размеров проводника с током. Для увеличения индуктивности проводник наматывают в катушки , расчету которых и посвящена программа