Наша первая подборка материалов под рубрикой «Оружие будущего», посвященная боевым роботам, вызвала немалый интерес у читателей, о чем свидетельствуют письма в редакцию. В них они просят продолжить публикации о современных и разрабатываемых за рубежом видах вооружений. Выполняя эту просьбу, мы посвящаем очередную подборку боевым лазерам. Напомним, что в опубликованном журналом New Scientist рейтинге наиболее многообещающих систем оружия они занимают второе место.

«Лучи смерти» Архимеда

«Когда Марцелл убрал корабли на расстояние, превышающее полет стрелы, старик соорудил особое шестиугольное зеркало; на расстоянии, пропорциональном размеру зеркала, он расположил похожие четырехугольные зеркала, которые можно было перемещать с помощью специальных рычагов и шарниров. Зеркало он обратил к полуденному солнцу - зимнему или летнему - и, когда пучки лучей отразились в нем, огромное пламя вспыхнуло на кораблях и с расстояния полета стрелы превратило их в пепел».
Это по сути первое упоминание о «лучах смерти», которые следует, наверное, считать прообразом лазерного оружия. Они, согласно дошедшим до нас легендам, были изобретены Архимедом в III веке до нашей эры и применены при обороне Сиракуз от осаждавших город римских войск. Кстати, на рис. 1 показано, как итальянский художник Джулио Париджи (1571 – 1635) представлял действие этого оптического оружия. На протяжении последующих двух тысячелетий шли споры о возможности превращения света в оружие, спорадически провоцируемые писателями-фантастами. Наиболее известными из них стали романы «Война миров» Герберта Уэллса и «Гиперболоид инженера Гарина» Алексея Толстого. В первом напавшие на Землю пришельцы были оснащены оружием, в котором в качестве поражающего фактора служили неизвестно каким образом создаваемые тепловые лучи. Во втором автор даже описал конструкцию и принцип действия своего оружия. В качестве источника энергии в гиперболоиде использовались некие термитные свечи, а система зеркал фокусировала тепловой луч. В результате получался «…узкий, как игла, луч, срезающий трубы огромных заводов, режущий, как раскаленный нож, броню линкоров...».
На практике же никак не удавалось создать устойчивый луч при помощи традиционных источников и систем. Лишь изобретение в 1954–1955 годы советскими учеными Николаем Басовым и Александром Прохоровым одновременно с американцем Чарльзом Таунсом оптического квантового генератора сдвинуло процесс с мертвой точки. В результате был получен первый лазер (LASER - «Light Amplification by Stimulated Emission of Radiation», что означает «усиление света в результате вынужденного излучения»). По формулировке Николая Басова, «лазер – это устройство, в котором энергия, например тепловая, химическая, электрическая, преобразуется в энергию электромагнитного поля – лазерный луч. При таком преобразовании часть энергии неизбежно теряется, но важно то, что полученная в результате лазерная энергия обладает более высоким качеством. Качество лазерной энергии определяется ее высокой концентрацией и возможностью передачи на значительное расстояние. Лазерный луч можно сфокусировать в крохотное пятнышко диаметром порядка длины световой волны и получить плотность энергии, превышающую уже на сегодняшний день плотность энергии ядерного взрыва».
Ныне уже существует множество конструкций лазеров. С некоторыми из них мы часто встречаемся в повседневной жизни. Например, с полупроводниковыми (лазерная указка и считывающая головка в CD- и DVD-проигрывателях), газовыми (школьный гелий-неоновый и технологический на углекислом газе, который режет металл) и другими. В военной же сфере успехи не столь разительны, хотя, учитывая свойства лазеров, нетрудно предположить, что у боевых лазерных систем большое будущее. Во-первых, лазерный луч достигает цели со скоростью света - 300 тыс. км в секунду. Во-вторых, лазерное оружие не зависит от земного притяжения: как известно, пули и снаряды летят по параболе, обусловленной гравитацией. В-третьих, лазерное оружие обладает невероятной точностью. К примеру, пройдя расстояние до Луны (380 тыс. км), диаметр луча разойдется всего на 1,5 километра. В-четвертых, лазерное оружие может полностью уничтожать атакуемые объекты или только повреждать их.
Поражающее действие лазерного луча достигается в результате нагревания до высоких температур материалов цели, что приводит к разрушению объекта, повреждению чувствительных элементов вооружения, ослеплению органов зрения человека, вплоть до необратимых последствий, нанесению ему термических ожогов кожи. Для противника действие лазерного излучения отличается внезапностью, скрытностью, отсутствием внешних признаков, высокой точностью, практически мгновенным действием. Правда, есть и серьезные проблемы боевого применения лазеров. Это прежде всего необходимость подключения лазерной пушки к мощному источнику электроэнергии. Для проведения одного «выстрела» требуется не менее 100 кВт. Эффективность лазерного оружия снижают туман, дождь, снегопад, задымленность и запыленность атмосферы.
Твердотельные, химические, жидкостные…
Как считается, создание лазерного оружия можно сравнить с рождением ядерной бомбы. И та страна, которая решит эту сложнейшую научно-техническую проблему первой, получит возможность диктовать свои условия мировому сообществу. Поэтому работы в этой области особо не афишируются. Тем не менее в средствах массовой информации достаточно сообщений, которые свидетельствуют, что в целом ряде государств, обладающих соответствующими технологиями, и особенно в США, ведутся интенсивные работы по созданию лазерного оружия. При этом основные усилия сосредоточены на твердотельных, химических, рентгеновских лазерах с ядерной накачкой, со свободными электронами и некоторых других.
Твердотельный лазер, для них в качестве активного вещества используют рубины или некоторые другие кристаллы, рассматривается специалистами США в качестве одного из перспективных типов генераторов для боевых систем. При этом, однако, указывается, что твердотельные лазеры требуют слишком много энергии для накачки и охлаждения, чтобы быть использованными на поле боя. В этом плане более привлекательными выглядят жидкостные лазеры. В качестве активного вещества они используют редкоземельные элементы, которые растворяют в некоторых жидкостях. Жидкостью можно заполнять любой объем. Это облегчает охлаждение активного вещества путем циркуляции самой жидкости в приборе. Вместе с тем мощности таких лазеров невелики.
Агентство по оборонным разработкам министерства обороны США решило объединить технологии жидкостного и твердотельного лазеров. Лазеры с жидким активным веществом способны испускать непрерывный луч, не требуя больших систем охлаждения, в то время как лазеры на основе кристаллов обладают большей мощностью, но во избежание перегрева луч пульсирует. «Мы объединили высокую «энергетическую плотность» твердотельного лазера с «термоустойчивостью» жидкого лазера», - заявил руководитель проекта Дон Вудбери. Таким образом получается непрерывный лазерный луч значительной мощности, не требующий больших систем охлаждения. В Пентагоне рассчитывают, что благодаря этому объединению ученые создадут компактный боевой лазер мощностью 150 киловатт уже в 2007 году.
Еще больший поток энергии в луче удалось достичь при помощи химического лазера, для получения которого используется реакция соединения водорода с фтором. Всего из одного грамма реагентов при этой реакции выделяется около 500 Дж энергии. Если заменить обычный водород на дейтерий, то спектр полученного луча окажется в «окне прозрачности» атмосферы и такую «пушку» можно будет применять даже для поражения укрепленных наземных объектов. Однако эксплуатировать боевую систему, работающую на такой гремучей смеси (фтор реагирует даже со стеклом, а выделяемый фтороводород является одной из сильнейших кислот), непросто. Кроме того, химические лазеры требуют, чтобы рядом находился целый склад химических веществ, используемых в качестве топлива.
В 2003 году специалисты управления научных исследований ВМС США и национальной лаборатории ускорителей имени Томаса Джефферсона разработали лазер на свободных электронах FEL (free-electron laser). Для его получения пучок высокоэнергетических электронов пропускают через специальное устройство («магнитную гребенку»), которое заставляет их совершать синусоидальные колебания с заданной частотой. Меняя параметры «магнитной гребенки», можно на выходе получать излучение с разной длиной волны. Коэффициент полезного действия у такого лазера значительно больше, чем у других типов, - порядка 20 процентов. Как показывают эксперименты, это устройство умеет «настраиваться» на излучение электромагнитных волн инфракрасного, оптического диапазонов, а также волн сверхвысокой частоты. К тому же у него есть еще одно свойство, которого нет ни у одного подобного устройства в мире: он может излучать предельно короткие световые импульсы продолжительностью менее одной триллионной секунды. «FEL превзошел все наши ожидания», - заявил представитель управления научных исследований ВМС США Гил Граф. По его словам, морское командование рассматривает возможное применение лазерной установки, в первую очередь для создания активной боезащиты надводных кораблей.
В последние годы интенсивные работы идут по созданию боевых систем на основе рентгеновских лазеров. Их воздействие на объект отличается от уже рассмотренных лазеров, поражающих цели лучами за счет теплового воздействия. При применении рентгеновского лазера цель оказывается под ударным импульсивным воздействием, приводящим к испарению материала ее поверхности. Такие лазеры отличаются большой энергией рентгеновского излучения (в 100 – 10.000 тыс. раз выше, чем у других лазеров) и способностью проникать сквозь значительные толщи различных материалов.
В поиске новых источников энергии, которые были бы не менее мощными, чем ядерные, обладали точностью лазерного оружия и легко управлялись в широком диапазоне значений энергии, ученые пришли к технологии искусственного распада протона. При нем освобождается почти в сотню раз больше энергии, чем даже при термоядерном взрыве. В отличие от реакции ядерного деления протонные распады не требуют каких-либо критических значений масс или фиксированных значений других параметров. Важна лишь определенная их комбинация. Это позволяет создать генераторы любой мощности и использовать их различные модификации для широкого спектра видов оружия. От индивидуального излучателя до стратегических планетарных комплексов, энергетических установок и транспортных систем.
С космоса и по космосу
Если говорить о конкретных боевых лазерных системах, то, например, в США приоритетным направлением в их создании стала разработка лазерных комплексов в интересах противовоздушной, противоракетной и противокосмической обороны. При этом предусматривается создание таких систем, которые можно было бы применять на тактическом, оперативно-тактическом и глобально-стратегическом уровнях.
Первый действующий прототип боевого лазера (тактический высокоэнергетический лазер - Tactical High-Energy Laser - THEL) был создан американо-израильской исследовательской группой и прошел успешные испытания в 2000 году на полигоне Уайт-Сэндз в Нью-Мексико. В ходе испытания THEL (фото 1) смог уничтожить несколько десятков ракет, запущенных с расстояния примерно 10 км. Он одновременно вел 15 целей и потратил на уничтожение каждой из них не более 5 секунд. При этом, однако, THEL мог без перезарядки произвести всего пару выстрелов по 3 тыс. долларов каждый. Три основных компонента этой системы - химический дейтерий-фторный лазер, оптическая система управления лазерным лучом и пункт боевого управления и связи - были разработаны отдельно, не интегрированы в единый комплекс. В результате получилась подвижная боевая система размером в 6 огромных туристических автобусов, что представляет собой слишком лакомую цель для противника. Предполагается, что после доработки и совершенствования системы, создания ее в мобильном варианте она сможет решать задачи ПВО (ПРО) на тактическом уровне и защищать войска США и союзников от ракет «земля - земля» и крылатых ракет.
Тем временем на базе THEL корпорация «Нортроп – Грамман» разработала лазерный комплекс Skyguard. Он превосходит своего предшественника по мощности и дальности действия и, по словам разработчиков, может использоваться для защиты важных военных и гражданских объектов, а также расположения войск от обстрела баллистическими ракетами малой дальности, снарядами реактивных систем залпового огня (типа «Град» или MRLS), артиллерийскими снарядами и минометными минами. Одиночный комплекс Skyguard может прикрыть территорию до 10 километров в диаметре.
Для второго уровня - оперативно-тактического - разрабатывается боевая лазерная система воздушного базирования ABL (Airborne Laser). Натурные испытания по программе авиационного лазера начнутся в 2008 году. Самолет «Боинг-747» (рис. 2) с мощным химическим лазером, установленным в носовой части лайнера, начнет пробные стрельбы по ракетам-мишеням. Исследования ведутся под руководством агентства противоракетной обороны США. Разработчики рассчитывают, что лазерная установка будет использоваться для уничтожения баллистических ракет во время старта, когда они наиболее уязвимы, а также на траектории на дальностях от 300 до 500 км. Для этого самолет с бортовым лазером будет барражировать вблизи от предполагаемого района пуска ракет. Инфракрасные датчики обнаружат ракетный пуск и дадут сигнал на компьютер, который повернет башенку с лазером в нужную сторону. Сначала должны сработать два небольших твердотельных лазера, один из которых будет служить для целеуказания, а второй - рассчитывать оптическое искажение с учетом атмосферных изменений. Затем основной лазер поразит ракету.
Бюджет программы ABL в 2006 году составил 471,6 млн. долларов. На эти деньги предполагалось провести испытания систем корректировки и устойчивости целеуказания лазера, а также наземные испытания с тем, чтобы подготовить стрельбы в воздухе. И в конце октября корпорация «Боинг» представила заказчикам из Пентагона модифицированный самолет «Боинг-747-400F», вооруженный высокоэнергетической лазерной установкой, способной уничтожать баллистические ракеты сразу после их запуска. Как сообщает Рейтер, наземные испытания системы прошли успешно, и в 2008 году запланирован первый учебно-боевой перехват баллистической ракеты в воздухе. А ориентировочно к 2012 - 2015 годам ВВС США планируют иметь в составе сил ПВО (ПРО) на ТВД до 7-8 самолетов с системой ABL. Считается, что она может быть также использована для уничтожения других стратегических и тактических целей.
Третий уровень - глобально-стратегический - космическая лазерная система (программа SBL). Ее разработка идет по нескольким направлениям. Еще в 1997 году в США был проведен эксперимент по облучению лазером экспериментального спутника ВВС MSTI-3, находящегося на высоте 420 км. Испытания показали, что энергии небольшого химического лазера мощностью 30 Вт, который использовался для наведения мощной лазерной установки MIRACL, вполне достаточно для ослепления оптической аппаратуры спутников съемки Земли.
Сегодня же специалисты компании «Боинг» и ВВС ведут работы по проекту ARMS (Aerospace Relay Mirror System - воздушно-космическая релейная зеркальная система). Согласно ему новое оружие будет представлять сверхмощные стационарные лазеры наземного или морского базирования и систему зеркал, расположенную на дирижаблях и беспилотных самолетах, а в перспективе и на космических спутниках. Это позволит ему наносить удар по любым целям на земле и околоземном пространстве практически мгновенно. Принимающее зеркало будет собирать свет и затем перенаправлять его через специальную фокусирующую систему, которая определяет помехи, возникшие в атмосфере, и корректирует сигнал. После корректировки второе зеркало посылает луч на заданную цель. Лазерная установка при этом должна иметь мощность 1001000 кВт.
Проведенные в этом году испытания на базе ВВС США Киртленд в штате Нью-Мексико подтвердили боеспособность новой системы. В их ходе были использованы лазер мощностью 1 кВт и отражающая система, расположенная на расстоянии 3 км. Система состояла из двух зеркал шириной 75 см, находящихся близко друг к другу. Они были подвешены на высоте 30 м с помощью крана. Лазерный луч успешно был перенаправлен и попал в цель.
Судя по сообщениям, в Пентагоне рассматривается также проект создания сети спутников (космических платформ), оснащенных лазерными «орудиями» (рис. 3). Его разработчики утверждают, что эти «орудия» смогут уничтожать широкую гамму целей на всей земной поверхности и в околоземном пространстве. Существуют и другие проекты, что позволяет сделать вывод, что в США пока нет единого плана по созданию боевых лазерных систем глобально-стратегического уровня. Тем не менее Пентагон намерен провести натуральные испытания таких лазеров начиная с 2012 года, а прием их на вооружение планируется на 2020 год.
В боевых порядках пехоты
Ну а что же на поле боя? Будут ли противоборствующие стороны поражать друг друга «лучами смерти» в наземных операциях? «Безусловно, - заявил по этому поводу специалист Пентагона в области лазерного оружия Шелдон Мет. - Да, сегодня химические лазеры высокой мощности нуждаются в поддержке чуть ли не целого химзавода, а твердотельные требуют слишком много энергии для накачки и охлаждения, чтобы быть использованными на поле боя. Но в перспективе боевой лазер появится в возимом варианте - для установки на бронетранспортере - и даже в носимом варианте - в заплечном мешке». Шелдон Мет не называет сроки. Однако его коллега Дон Вудбери уверен, что это произойдет уже через два года, когда будет создан первый боевой лазер для использования в наземных операциях. Весить он должен не более 750 кг, а по размерам соответствовать крупному холодильнику. Это позволит устанавливать его на бронетранспортер. А в последующем габариты этого лазера будут только уменьшаться.
«Поле боя поменяется, - говорит сотрудник лаборатории Ливермора Томас Макгранн, занимающийся симуляцией боевых действий с применением лазеров. – Когда сегодня враг чем-то стреляет в меня, я это сбиваю. С любого расстояния от одного до трех километров я смогу подавить огонь. Когда он отправляет свои беспилотные летательные аппараты, в которые очень трудно попасть, я сбиваю и их. Пехотинец говорит, что его обстреливают с поросшего лесом склона холма. Тогда мы просто устраиваем там пожар. Но лазерный луч засечь практически невозможно, а главное – он позволяет нанести мгновенный удар с почти 100-процентной гарантией поражения цели». Лазерный луч можно использовать для выведения из строя электроники в боевой технике или взрывного устройства, а также личного состава противника. Например, для парализации произвольно сокращающихся мышц рук и ног. При этом мышцы сердца и легких, работающие на другой частоте, продолжают нормально функционировать.
Конечно же, ожидать, что солдаты будут бегать с лазерами наперевес, как это происходит в фантастических фильмах, не приходится. «Скорее всего, это будет исключительно дальнобойная, сверхточная снайперская винтовка, - полагает американский специалист по вооружениям Джон Пайк. – С ее помощью из-за укрытия и можно будет добиться желаемого результата». Но ее появление на вооружении – далекая перспектива. В ближайшее же время в американские войска в Ираке и Афганистане поступит лазерное устройство, которое сможет временно ослеплять водителей, игнорирующих предупреждения на пропускных пунктах. По мнению представителей Пентагона, это должно снизить количество потерь среди местных жителей, которые не обращали внимания на предупреждающие сигналы и попадали под огонь американских солдат. Для этого на карабинах M-4 будет помещено трубообразное устройство длиной 27 мм, способное выдавать луч лазера. Он будет временно ослеплять водителей, не приводя их к полной потери зрения. Не исключено, что в последующем это устройство в зависимости от мощности будет применяться и против механика-водителя вражеской бронетехники, снайпера, пилота низколетящего штурмового вертолета. А чтобы не поразить своего, фирма «Моторола» создает устройство CIDDS. Оно позволяет отличать в боевых условиях своих от чужих на расстоянии 1 км. Одна часть CIDDS крепится на шлеме, вторая - на винтовке. Когда лазерный луч, генерируемый вторым блоком, контактирует с модулем CIDDS на шлеме другого солдата, этот модуль посылает шифрованный радиосигнал о том, кто обнаружен, – свой или чужой. Процесс опознания занимает около 1 сек.
В боевых порядках американских войск могут скоро появиться и боевые лазеры, установленные на тягачах, бронетранспортерах и самолетах. Так, в октябре нынешнего года компания «Боинг» приступила к испытаниям так называемого передового тактического лазера (Advanced Tactical Laser – ATL). Этот высокоактивный химический лазер, установленный на самолете C-130H, сможет, как полагают его разработчики, уничтожать или наносить ущерб целям в городских районах практически без сопутствующего урона. Дальность действия ATL, как ожидается, будет составлять более 20 километров. Разрабатывается вариант этого лазера и для его установки на «Хаммерах».
Корпорация «Дженерал дайнэмикс» будет производить для армии США дистанционно управляемую машину разминирования Thor (фото 2), оснащенную лазерной установкой. Дистанционно управляемая гусеничная машина разработана израильской компанией «Рафаэль». Thor вооружен крупнокалиберным пулеметом M2HB и лазерной установкой, предназначенной для уничтожения неразорвавшихся боеприпасов и самодельных взрывных устройств. Лазерная установка позволяет уничтожать неразорвавшиеся снаряды, мины и взрывные устройства без детонации, вызывая выгорание взрывчатого вещества. Пулемет позволяет уничтожать снаряды и взрывчатые устройства в массивных корпусах, не поддающихся воздействию лазера. Thor оснащен оптико-электронной системой, позволяющей обнаруживать снаряды и мины независимо от погоды и времени суток. Характеристики машины позволяют использовать ее для сопровождения конвоев, прорыва укрепленных оборонительных позиций, расчистки местности. Бронирование машины позволяет выдерживать огонь стрелкового оружия и малокалиберной зенитной артиллерии.
Нет необходимости особо подчеркивать, что эффективность применения оружия во многом определяют правильное целеуказание и прицеливание. И здесь лазерные устройства получили самое широкое распространение. Это прежде всего использование в стрелковом оружии прицелов с так называемой «светящейся прицельной точкой». Суть действия состоит в том, что точка прицеливания указывается лучом света, формируемого посторонним источником, который связан с механизмом прицела и может учитывать поправки по направлению и дальности. Причем в самых совершенных моделях расчет поправок проводят электронные баллистические вычислители с датчиками температуры, давления и других параметров. Есть еще лазерные осветители, указатели и дальномеры. Первые представляют собой мощные точечные источники света часто, закрепляемые на оружии и имеющие дальность действия до 300 метров. Лазерные дальномеры только сейчас приходят в ручное стрелковое оружие, хотя на тяжелом вооружении они появились несколько лет назад.
Наконец, целеуказатели. Их можно монтировать отдельно от прицелов либо в комбинации с ними и с их помощью выбирать точку прицеливания непосредственно на цели. Есть и комплексные лазерные целеуказатели. Такие как AN/PEQ-1B. Они вскоре поступят на вооружение подразделений спецназначения ВМС США и корпуса морской пехоты, отвечающих за целеуказание для самолетов морской авиации. Аппарат отличается небольшим весом - 5,5 килограмма и компактными размерами (26х30х13 сантиметров). Целеуказатель может работать как в ручном, так и в автоматическом режиме, подсвечивая цели в секторе 45 градусов. Аппарат измеряет расстояние до целей в диапазоне от 200 до 10.000 метров с точностью плюс-минус пять метров. Разрешающая способность приемника отраженного луча составляет 50 метров. В режиме подсветки цели аппарат создает лазерное «пятно» небольшого размера (на расстоянии пять километров - 2,3х2,3 метра), обеспечивая возможность точечного поражения малоразмерных и высокозащищенных целей.
Здесь речь шла прежде всего о создании лазерного оружия в США. Но и другие страны наращивают усилия в этой сфере. Среди тех, кто уже добился определенных успехов в создании таких вооружений, называют Израиль, Францию, Китай. Так, по данным издания DefenseNews, Китай уже несколько раз облучал американские спутники видовой разведки серии KeyHole во время их пролета над территорией страны с помощью мощной лазерной наземной установки. О том, что Китай обладает лазерным оружием, говорится и в ежегодном докладе Пентагона конгрессу США о военной мощи КНР в 2006 году. Как там записано, «по меньшей мере одной из противоспутниковых систем, вероятно, является наземная лазерная установка, предназначенная для повреждения или ослепления спутников».
Кстати, еще в 1960-е годы Советский Союз в местечке Сары-Шаган создал огромную лазерную установку «Терра-3». Она была способна за сотни километров определить не только дальность до цели, но и ее размеры, форму, траекторию движения. На «Терре» был создан локатор, который мог зондировать космическое пространство. В 1984 году ученые предлагали «пощупать» им американский корабль «Шаттл» на орбите. Но высшее политическое руководство испугалось возможного шума. США в то время лишь пытались сконструировать систему по получению боевого лазерного луча.

На снимках: «Лучи смерти». Картина Джулио Париджи (1571-1635).
На испытаниях THEL.Фото 1.
Дистанционно управляемая машина разминирования Thor.Фото 2.
Проект «Боинга-747» с химическим лазером. Рис. 2.
Проект космических платформ, оснащенных лазерными «орудиями». Рис. 3.

Первый лазер был продемонстрирован публике в 1960 году, и западные журналисты сразу же прозвали его «лучом смерти». Вот уже более полувека ученые и инженеры США, СССР, а теперь и России ведут разработки лазерного оружия. На эти проекты потрачены десятки миллиардов долларов и рублей.

Время от времени появляются сообщения об успешных испытаниях лазерных вооружений. Один из последних примеров: в августе 2014 года на военном корабле США Ponce в Персидском заливе была испытана лазерная пушка LaWS мощностью 30 кВт, которая сожгла мотор на надувной лодке и сбила беспилотник. Заметим, что в нашей стране беспилотники лазером сбивали еще 40 лет назад. Тем не менее реального лазерного оружия нет ни в России, ни в США. Почему?
Вот несколько историй про лазерные пистолеты, ружья и танки, которые так и не стали массовыми.
1. Пистолет космонавта
На определенном этапе развития советской космической программы у военных возник закономерный, с их точки зрения, вопрос: чем будут сражаться советские космонавты, если дело дойдет до абордажа и рукопашной схватки в космосе. Ответом стало индивидуальное лазерное оружие самообороны космонавта. Этот артефакт ныне хранится в музее Военной академии ракетных войск стратегического назначения, где лазерный пистолет и был разработан в 1984 году.
В аварийном запасе космонавтов вообще-то есть огнестрельное оружие: трехствольный пистолет ТП-82. Однако предназначен он для использования на земле против диких зверей в случае аварийной посадки. (Американцы, кстати, ограничились вооружением своих астронавтов специальными ножами Astro 17.) Однако в космосе обычный пистолет использовать затруднительно: во-первых, отдача от выстрела в невесомости представляет собой большую проблему для стреляющего, а самое главное - пуля, пробившая обшивку корабля, убьет не только противника, но и обладателя пистолета. Идеальным оружием для космоса выглядит луч лазера, но для него нужен очень мощный источник энергии. И тогда конструкторы предложили использовать для накачки лазера пиротехническую лампу-вспышку. Такая лампа изготавливалась в виде патрона калибром 10 мм, что позволило сделать лазерное оружие в габаритах обычного пистолета. Магазин содержал 8 патронов. Был сделан образец и в виде револьвера с барабаном на 6 патронов. Энергия его излучения была сравнима с энергией пули пневматической винтовки. Луч мог повредить глаза или оптические приборы на расстоянии до 20 м, но при этом не пробивал обшивку. Оружие было испытано и изготовлено в 1984 году, однако до серийного производства и принятия на вооружение дело так и не дошло: началась разрядка международных отношений, и сугубо военные пилотируемые программы были закрыты.
2. Ослепительные перспективы
4 апреля 1997 года вертолет канадских ВВС, сопровождавший выход американской атомной подводной лодки «Огайо» в пограничном между США и Канадой проливе Хуан-де-Фука, приблизился к российскому сухогрузу «Капитан Ман». На борту вертолета, кроме пилота-канадца Патрика Барнса, находился в качестве наблюдателя офицер ВМФ США Джек Дейли. Им показались подозрительными антенны на «Капитане Мане» и сам факт появления российского судна в проливе в момент выхода подводного атомохода. Решено было провести облет и фотографирование корабля. Во время этой операции пилот и наблюдатель зафиксировали вспышку на борту судна и почувствовали сильную резь в глазах.
Врачи констатировали ожог сетчатки глаза как у пилота, так и у наблюдателя. Прибывший в порт сухогруз был тщательно обыскан: несколько десятков представителей ФБР и береговой охраны США в течение 18 часов осматривали корабль, но никаких следов лазерного оружия не нашли. Оба пострадавших, кстати, из-за проблем со здоровьем вынуждены были уйти с военной службы, а американец позже даже подал в суд на Дальневосточное пароходство, которому принадлежал «Капитан Ман». Адвокаты утверждали, что Дейли стал жертвой «жестокой атаки иностранного государства на американской территории». Однако доказать, что воздействие произошло именно с борта российского судна, не удалось. Яркая точка, зафиксированная на одном из снимков, могла быть отблеском от иллюминатора.
Ослепляющее оружие разрабатывалось во многих странах. Китай, к примеру, в 1995 году демонстрировал лазерное ружье ZM-87, способное полностью лишить зрения противника на расстоянии в несколько километров. Однако в том же 1995 года была подписана международная конвенция, запрещающая использовать лазер для необратимого ослепления людей. Для временного ослепления - пожалуйста. К примеру, на вооружении МВД России вполне официально стоит специальный лазерный фонарь «Поток», вызывающий временную потерю зрения при воздействии на расстоянии 30 м. В США разработана лазерная винтовка PHASR. Великобритания применяла слепящие ружья Dazzler против аргентинских летчиков во время Фолклендской войны. В октябре 1998-го лазер повредил зрение экипажа американского вертолета в Боснии. Было зафиксировано использование лазера в отношении вертолетов США со стороны Северной Кореи, после чего американские пилоты стали надевать специальные защитные маски. Впрочем, грань тут очень шаткая. Оружие, вызывающее временную слепоту на дистанции 10 км, выжжет глаза со 100 м. Есть и еще одна лазейка: не запрещено использовать лазер против оптических систем, а уж если кто-то смотрит в окуляр с другой стороны - его проблемы.
3. Лазерный танк
В Военно-техническом музее в подмосковной Ивановке можно увидеть удивительный экспонат. Внешне он напоминает лазерную «Катюшу» с 12 оптическими «стволами» на шасси самоходной гаубицы «Мста». Воинская часть, передавшая этот образец вооружения музею, даже не знала назначения этой техники. Между тем речь идет о самоходном лазерном комплексе 1К17 «Сжатие». Кстати, его создатель НПО «Астрофизика», один из основных разработчиков лазерного оружия в России, до сих пор отказывается давать информацию по этому оружию, поскольку гриф секретности с него еще не снят.
У любой современной боевой техники, будь то артсистема, танк или вертолет, есть одно уязвимое место - оптика. Не надо крушить броню, достаточно повредить хрупкие оптические системы, и противник становится беспомощным. Лазер - отличное средство для этого. Первое подобное устройство в СССР испытывали еще в 1982 году: самоходный лазерный комплекс 1К11 «Стилет» на шасси гусеничного минного заградителя был призван выводить из строя оптико-электронные системы наведения танков и самоходок. Обнаружив цель радаром, «Стилет» посредством лазерного зондирования находил оптическое оборудование по бликующим линзам, а затем поражал его лазерным импульсом, выжигая фотоэлементы.
В 1983 году был создан другой комплекс - «Сангвин». Он устанавливался на шасси зенитной самоходной установки «Шилка» и предназначался для поражения оптико-электронных систем вертолетов. На дистанции до 8 км лазер полностью выводил из строя прицелы, а на большем расстоянии ослеплял их на десятки минут.


Самоходный лазерный комплекс 1К17 «Сжатие» стал дальнейшим развитием подобной системы. От лазера определенной частоты оптику можно защитить фильтром. У «Сжатия» было 12 лазеров с разной длиной волны. 12 фильтров надеть на оптику невозможно. В 1990 году комплекс был выпущен в единственном экземпляре, прошел испытания и даже был рекомендован к принятию на вооружение, однако космическая стоимость не позволила начать его серийное производство. Ведь для одного комплекса требовалось вырастить 30 кг искусственных кристаллов. При этом эффективность лазерного оружия в реальном бою вызывала у военных очень большие сомнения.
4. Лазерное оружие «Газпрома»
21 июня 1991 года на скважине № 321 Карачаганакского нефтегазоконденсатного месторождения вспыхнул пожар. Языки пламени взлетали на 300 метров. Сбить огонь мешали металлоконструкции буровой установки. Чтобы уничтожить их, привлекли танк, но два дня пальбы ни к чему не привели: точности выстрелов оказалось недостаточной для уничтожения массивных металлических опор. Пожар не могли погасить три месяца. Именно тогда специалисты по ликвидации аварий стали наводить справки: а нет ли в стране более эффективного оружия?
Прошло 20 лет. 17 июля 2011 года похожая авария произошла на Западно-Таркосалинском месторождении в Ямало-Ненецком автономном округе. На ликвидацию металлоконструкций потребовалось всего 30 часов. Толстенные балки и трубы были срезаны Мобильным лазерным технологическим комплексом мощностью 20 кВт (МЛТК-20).
Еще более мощный вариант этой системы - МЛТК-50, способный резать сталь толщиной 120 мм на расстоянии 30 м, был продемонстрирован еще в 2003 году на авиашоу МАКС, генеральным спонсором которого, кстати, является ВТБ. Комплекс представлял собой установку, смонтированную на грузовике и прицепе: на одном - собственно лазер, на втором - авиационный двигатель, который снабжает лазер энергией. Западные специалисты задумчиво переглядывались при виде МЛТК-50. Уж больно она им что-то напоминала. Да, собственно, ее истинное происхождение никто особенно и не скрывал. Создателем «технологического комплекса по ликвидации аварий», который предлагали любому желающему за 2 млн долларов, являлся… концерн ПВО «Алмаз-Антей», с которым ВТБ связывает длительное сотрудничество. Среди рекламных материалов была раскадровка видеосъемки, на которой луч лазера сбивал беспилотник. Документ под названием «Испытания воздействия лазерного излучения на аэродинамическую мишень» датирован 1976 годом. МЛТК, по сути, это и есть лазерная зенитка с демонтированной системой наведения. Почему же этот комплекс до сих пор не стоит на вооружение нашей армии? Чтобы ответить на этот вопрос, для начала давайте разберемся, а, собственно, о какой мощи идет речь? Что такое мощность в 50 кВт, которой обладает лазер МЛТК-50? Это приблизительно в два раза меньше, чем мощность выстрела… довоенного авиационного пулемета ШКАС, который устанавливали на истребитель И-15. При этом для обеспечения лазера энергией приходится возить с собой авиационную турбину в грузовике, не говоря о запасах топлива для нее. А ШКАС весил всего 11 кг.
Лазер стреляет дальше? В хорошую погоду - да. Недаром американцы испытывали свое лазерное орудие именно в Персидском заливе. А что будет, к примеру, в снежную бурю в Северной Атлантике? Лазерный луч очень чувствителен к пыли, аэрозолям и атмосферным осадкам. А что произойдет на реальном поле боя, окутанном дымом от взрывов? Долго ли протянет в сражении боевая машина, вооруженная приличного размера телескопом, пусть и покрашенным в зеленый цвет? Да и в хорошую погоду дальность действия лазерного луча оказывается вовсе не беспредельной.
Военно-морской вариант и российским военным представлялся весьма перспективным направлением использования лазерного оружия: базирование на корабле давало комплексу необходимую мобильность, а размеры судна позволяли разместить на борту достаточно мощные генераторы. В рамках советской программы «Айдар» экспериментальную лазерную установку разместили на сухогрузе «Диксон», а энергетику ей обеспечивали три двигателя от самолета Ту-154.
Испытания прошли летом 1980 года: стреляли по мишени на берегу на расстоянии 4 км. Лазер попал в мишень, однако выяснилось, что до цели дошло только 5% энергии излучения. Все остальное поглотил влажный морской воздух. В результате всевозможных ухищрений в конце концов удалось добиться того, что луч прожигал обшивку самолета на расстоянии 400 м. В 1985 году программу «Айдар» закрыли.
5. Терра инкогнита
10 октября 1984 года на американском многоразовом корабле «Челленджер», который пролетал на высоте 365 км над озером Балхаш, внезапно отключилась связь, в работе оборудования возникли сбои, а астронавты почувствовали недомогание. Так проявила себя работа лазерного локатора 5Н26/ЛЭ-1, испытания которого проводились на полигоне Сары-Шаган. Этот проект впоследствии получил известность под названием «Терра». Его целью было создание мощного лазера ПРО, способного сбивать боеголовки баллистических ракет. Однако по «Челенджеру» в тот день отработал всего лишь локатор, предназначенный для сканирования космических объектов и боеголовок, а не оружие для их уничтожения.
Тем не менее американцы быстро поняли, что их корабль подвергся какому-то воздействию с территории СССР, и заявили протест. Больше высокоэнергетические средства локации для сопровождения американских пилотируемых кораблей не применялись. Локатор ЛЭ-1 во множестве экспериментов подтвердил свою работоспособность. Его точность по дальности составляла 10 м на расстоянии 400 км. А вот с боевым лазером дело не заладилось. Для уничтожения боеголовки нужно было излучение очень большой мощности, а у лазера очень низкий КПД: для генерации излучения мощностью 5 МВт нужна энергия в 50 МВт, а это мощность атомного ледокола.
В попытке решить эту проблему для накачки было предложено использовать энергию взрыва, который создавал ударную волну в ксеноне в так называемом фотодиссационном лазере. Эти устройства собирались из стандартных секций длиной 3 м. Наращивая длину, можно было получить мощность в 100 раз большую, чем у любого известного в то время лазера. Понятно, что такое устройство было одноразовым. Для получения нужной мощности необходимо было взорвать около 30 т взрывчатого вещества, поэтому генератор боевого излучения должен был располагаться не ближе 1 км от собственной системы наведения. Для передачи излучения на это расстояние предполагалось использовать подземный туннель. В конце концов от этой схемы отказались в пользу лазера другого типа, мощность которого довели до 500 кВт. С его помощью была поражена мишень размером с советскую пятикопеечную монету, правда на близком расстоянии. Увы, для поражения боеголовок ракет этого оказалась недостаточно. Итог «Терры» подвел нобелевский лауреат академик Николай Басов, научный руководитель этого проекта: «Мы твердо установили, что никто не сможет сбить боеголовку баллистической ракеты лазерным лучом». Программа была закрыта.
Над лазерным оружием работал и академик Александр Прохоров – другой советский ученый, получивший вместе с Николаем Басовым и американцем Чарлзом Таунсом в 1964 году Нобелевскую премию по физике за фундаментальные работы, приведшие к изобретению лазера. Его проект назывался «Омега» и предусматривал создание лазерного комплекса ПВО, который по мощности будет равен суммарной кинетической энергии типовой боевой части ракеты «земля – воздух». 22 сентября 1982 года комплекс 73Т6 «Омега-2М» поразил лазером радиоуправляемую мишень. По результатам этих исследований был создан мобильный вариант, однако на вооружение его так и не приняли. Причина проста. По совокупности боевых качеств лазерная система так и не смогла превзойти ракетные зенитные комплексы. Кому нужна зенитка, которой мешают облака?
6. Космический лазер
15 мая 1987 года состоялся первый старт советской сверхтяжелой ракеты «Энергия». В первом полете вместо «Бурана» она несла огромный черный объект с двумя надписями: «Мир-2» и «Полюс». Первая из них никакого отношения к объекту не имела и являлась, в сущности, маскировкой или, если хотите, рекламой советской пилотируемой станции нового поколения. А вторая надпись – «Полюс» – была несекретным обозначением программы создания лазерной боевой станции 17Ф19 «Скиф». Запущенный в 1987 году объект назывался «Скиф-ДМ», то есть динамический макет.
Боевая станция «Скиф» была ответом на американскую программу «Звездных войн» – Стратегическую оборонную инициативу (СОИ), предполагавшую уничтожение советских ядерных ракет посредством космических лазеров с ядерной накачкой. Наш «Скиф» не предназначался для истребления ракет. Его целью были спутники наведения, без которых система СОИ становилась «слепой». На «Скифе» предполагалось использовать газодинамический лазер РД-0600 мощностью 100 кВт. Однако при его применении в космосе возникали проблемы: для его накачки расходовалось большое количество рабочего тела – углекислого газа. Истечение этого газа дестабилизировало спутник, поэтому для космического применения была разработана система безмоментного выхлопа. Ее проверка и была главной задачей «Скифа-ДМ». Испытания маскировались под геофизический эксперимент по изучению взаимодействия искусственных газовых образований с ионосферой Земли.
Увы, сразу после отделения от «Энергии» станция диаметром 4 м, длиной 37 м и массой 77 т потеряла ориентацию и утонула в Тихом океане. Есть версия, что «Скиф» был погублен нарочно. За три дня до запуска Михаил Горбачев заявил, что СССР не будет выводить оружие в космос. Формально «Скиф-ДМ» не имел оружия на борту, но его испытания ставили главу государства в неловкое положение. Естественно, появилась версия о намеренности этой ошибки. Однако знакомство с техническими подробностями оснований для подобной интерпретации событий не дает. Ошибка в программе появилась задолго до заявлений Горбачева. Разумеется, можно сказать, что ошибку не стали исправлять нарочно. Но и это не так. О ней просто никто не знал. Ошибка была зафиксирована при наземных предстартовых испытаниях, однако времени на расшифровку этих данных до старта уже не было. Впрочем, даже успешный полет ничего не решил бы в судьбе «Скифа». Американцы закрыли свою программу СОИ, а мы отказались от вывода лазерного оружия в космос.
Никто не против мирного космоса, но уговорить мировые державы прекратить гонку вооружений можно только одним способом: продемонстрировав, что отказываться от оружия им придется не в одностороннем порядке.
Что же мы получаем в итоге? Ни одна разработка по лазерному оружию в нашей стране так и не дала реального результата? Не все так печально.
7. Лазер воздушного базирования
Одной из самых эффектных лазерных программ США стало создание системы воздушного базирования YAL-1а: на Boeing-747-400F был установлен лазер, с помощью которого предполагалось сбивать ракеты на активном участке траектории. Система была создана и успешно испытана, однако дальность ее действия оказалось всего 250 км, а подлететь на такое расстояние к стартующей ракете на Boeing-747 нереально даже в войне с Ираном. Проблема в том, что лазерный луч в атмосфере расширяется из-за рефракции: на расстоянии 100 км в результате рассеивания в воздухе радиус пятна уже достигает 20 м. Энергия лазерного луча, размазанная на такой площади, не опасна для ракеты. За счет использования адаптивной оптики американцам удалось сфокусировать луч до размеров баскетбольного мяча на дальности 250 км, но не более. Кроме того, современные российские ракеты используют нехитрые приемы борьбы с лазерным воздействием: они вращаются в полете, то есть луч не может греть одно и то же пятно постоянно. Наши ракеты совершают судорожные маневры, которые невозможно просчитать заранее. Наконец, используется теплозащитное покрытие. Все это делает YAL-1а бесполезным в качества средства ПРО. Его лазер слишком слаб для этого.
Мощность лазера НЕL, установленного на YAL-1a, составляет, страшно подумать, 1 МВт! Это меньше, чем мощность выстрела обычной авиационной пушки. При этом стоимость каждой такой «пушки» размером с Boeing-747 составляет около 1 млрд долларов. Что мешает увеличить мощность? Кроме известной проблемы с генераторами, для которых и при 1 МВт нужен огромный транспортный самолет, при более интенсивном излучении начинает плавиться оптика. В итоге американцы программу, на которую было потрачено, по разным оценкам, от 7 до 13 млрд долларов, в 2011 году закрыли как бесперспективную.
Лазер воздушного базирования создавался и в СССР. Но с одним существенным отличием. Он предназначался для поражения спутников, которые являются гораздо более адекватной целью для подобного оружия. Во-первых, если стрелять вверх, а не вниз, то плотные слои атмосферы не рассеивают луч. Во-вторых, для вывода из строя спутника не нужно очень большой мощности излучения – достаточно повредить его датчики ориентации и целевую оптику.
Носителем противоспутниковой лазерной системы А-60 стал транспортный Ил-76МД. В носовой его части установлен лазер наведения, а боевой лазер выдвигается вверх в виде башенки, которая в «нерабочее время» скрывается под створками в верхней части фюзеляжа. Первый полет летающая лаборатория 1А совершила в 1981 году. Второй экземпляр – 1А2 – взлетел в 1991 году. Есть сведения, что первая лаборатория сгорела в 1989 году во время наземных экспериментов на аэродроме Чкаловский. Вторая машина по-прежнему используется для испытаний.
По имеющимся сведениям, на А-60 используется тот же лазер РД-0600, который предполагалось применять и на боевой станции «Скиф» и который к 2011 году прошел полный цикл испытаний. Его масса – 760 кг. А для его накачки используются два турбореактивных двигателя АИ-24 массой 600 кг каждый. Мощность – 100 кВт. Работы в этом направлении засекречены, однако сообщалось, что 28 августа 2009 года лазер А-60 поразил спутник на высоте 1500 км. Любопытно, что это был геофизический японский спутник Ajisal, на котором расположены отражающие элементы, позволяющие легко определять его местоположение в космосе. От этих элементов и был получен отраженный сигнал. Ajisal не имел оптики на борту и от выстрела А-60 не пострадал. А вот разведывательный спутник при таком воздействии будет выведен из строя.
Лазеры активно используются в военном деле в системах прицеливания, разведки и связи. Однако боевой лазер пока не дает реального преимущества по сравнению с обычным оружием. Создавать громадные установки для уничтожения беспилотников и моторных лодок, причем исключительно в хорошую погоду, – слишком дорогое удовольствие. От уже готовой и испытанной совместно с США лазерной системы ПВО отказался, к примеру, Израиль в пользу комплекса «Железный купол» с обычными ракетами.
Лазер – это не оружие поля боя. Это оружие демонстрации своего превосходства. Американцы вольны тратить на это деньги. Но в России ситуация иная, поэтому лазерное оружие будет использоваться только там, где оно действительно эффективно.

Привычный для нас термин «лазер» является аббревиатурой от Light Amplification by Stimulated Emission of Radiation, что в переводе означает «усиление света посредством вынужденного излучения».

Впервые о лазере всерьез заговорили во второй половине XX века. Первое действующее лазерное устройство американский физик Теодор Мейман представил в 1960 году, а в наши дни лазеры используются в самых различных сферах. Довольно давно они нашли применение и в военной технике, хотя вплоть до последнего времени речь шла преимущественно о нелетальном вооружении, способном временно ослепить противника или вывести из строя его оптику. Полноценные боевые лазерные комплексы, способные уничтожать технику, пока находятся на стадии разработки, и когда именно они встанут в строй, сказать пока сложно.

Основные проблемы связаны с большой стоимостью и высокой энергозатратностью лазерных комплексов, а также их способностью наносить реальный урон высокозащищенной технике. Тем не менее, с каждым годом ведущие страны мира все активнее разрабатывают боевые лазеры, постепенно увеличивая мощность своих прототипов. Разработку лазерного оружия правильнее всего было бы назвать инвестициями в будущее, когда новые технологии позволят всерьез говорить о целесообразности таких систем.

Крылатый лазер

Одним из самых нашумевших проектов лазерных боевых систем стал экспериментальный Boeing YAL-1. В роли платформы для размещения боевого лазера выступил модифицированный авиалайнер Boeing 747-400F.

Американцы всегда искали способы защитить свою территорию от неприятельских ракет, и проект YAL-1 создавался именно для этой цели. В его основе лежит химический кислородный лазер мощностью 1 МВт. Главное преимущество YAL-1 перед другими средствами противоракетной обороны — это то, что лазерный комплекс теоретически способен уничтожать ракеты на начальном этапе полета. Американские военные не единожды заявляли об успешных испытаниях лазерной установки. Тем не менее, реальная эффективность такого комплекса видится довольно сомнительной, и программа, обошедшаяся в 5 млрд долларов, была свернута в 2011 году. Впрочем, полученные в ней наработки нашли применение в других проектах боевых лазеров.

Щит Моисея и клинок Дядюшки Сэма

Израиль и США — мировые лидеры в области разработки боевых лазерных комплексов. В случае с Израилем создание таких систем обусловлено необходимостью противостоять частым ракетным обстрелам территории страны. В самом деле, если уверенно поражать цели типа баллистической ракеты лазер сможет еще нескоро, то бороться с ракетами малой дальности ему вполне под силу уже сейчас.

Палестинские неуправляемые ракетные снаряды «Кассам»» — источник постоянной головной боли для израильтян, и дополнительной гарантией безопасности должна была стать американо-израильская лазерная система ПРО Nautilus. Основную роль в разработке самого лазера сыграли специалисты американской компании Northrop Grumman. И хотя израильтяне вложили в Nautilus более 400 млн долларов, в 2001 году они вышли из проекта. Официально результаты испытаний ПРО были положительными, но военное руководство Израиля отнеслось к ним скептически, и в итоге американцы остались единственными участниками проекта. Разработка комплекса была продолжена, но до серийного производства дело так и не дошло. Зато опыт, накопленный в процессе испытаний Nautilus, был использован для разработки лазерного комплекса Skyguard.

Системы противоракетной обороны Skyguard и Nautilus построены вокруг высокоэнергетического тактического лазера — THEL (Tactical High Energy Laser). Согласно заявлениям разработчиков, THEL способен эффективно поражать реактивные снаряды, крылатые ракеты, баллистические ракеты малой дальности и беспилотники. При этом THEL может стать не только эффективной, но и весьма экономичной системой ПРО: один выстрел будет стоить всего около 3 тыс. долларов, намного дешевле пуска современной противоракеты. С другой стороны, говорить о реальной экономичности подобных систем можно будет лишь после их принятия на вооружение.

THEL — это химический лазер мощностью около 1 МВт. После обнаружения цели радаром компьютер ориентирует лазерную установку и производит выстрел. В доли секунды лазерный луч заставляет детонировать вражеские ракеты и снаряды. Критики проекта предрекают, что такого результата можно достичь лишь в идеальных погодных условиях. Возможно, именно поэтому ранее вышедшие из проекта Nautilus израильтяне не заинтересовались комплексом Skyguard. Но американские военные называют лазерную установку революцией в области вооружений. По словам разработчиков, серийное производство комплекса может начаться совсем скоро.

Лазер в море

Большой интерес к лазерным системам ПРО проявляет военно-морское ведомство США. По замыслу, лазерные комплексы смогут дополнить привычные средства защиты боевых кораблей, взяв на себя роль современных скорострельных зенитных орудий, таких, как Mark 15. Разработка подобных систем сопряжена с рядом трудностей. Мелкие капли воды во влажном морском воздухе заметно ослабляют энергию лазерного луча, однако эту проблему разработчики обещают решить за счет увеличения мощности лазера.

Одна из последних разработок в этой области — MLD (Maritime Laser Demonstrator). Лазерная установка MLD — всего лишь демонстратор, но в будущем ее концепция может лечь в основу полноценных боевых систем. Комплекс разработан компанией Northrop Grumman. Первоначально мощность установки была небольшой и составила 15 КВт, однако и ей во время испытаний удалось уничтожить надводную мишень — резиновую лодку. Конечно, в будущем специалисты Northrop Grumman намерены увеличить мощность лазера.

На авиасалоне «Фарнборо — 2010» американская компания Raytheon представила на суд общественности собственный концепт боевого лазера LaWS (Laser Weapon System). Эта лазерная установка объединена в единый комплекс с корабельной зенитной пушкой Mark 15 и на испытаниях сумела поразить беспилотник на дистанции около 3 км. Мощность лазерной установки LaWS составляет 50 КВт, чего достаточно, чтобы прожечь 40-миллиметровую стальную пластину.

В 2011 году компании Boeing и ВАЕ Systems начали разработку комплекса TLS (Tactical Laser System), в котором лазерная установка также совмещается со скорострельным 25-миллиметровым артиллерийским орудием. Считается, что эта система сможет эффективно поражать крылатые ракеты, самолеты, вертолеты и небольшие надводные цели на дальности до 3 км. Скорострельность Tactical Laser System должна составить около 180 импульсов в минуту.

Мобильный лазерный комплекс

Другая разработка компании Boeing — HEL-MD (High Energy Laser Mobile Demonstrator) — должна устанавливаться на мобильную платформу — восьмиколесный грузовик. На испытаниях, которые прошли в 2013 году, комплекс HEL-MD успешно поразил учебные мишени. Потенциальными целями для подобной лазерной установки могут стать не только беспилотники, но и артиллерийские снаряды. В скором времени мощность HEL-MD будет доведена до 50 КВт, а в обозримом будущем составит 100 КВт.

Еще один образец мобильного лазера недавно представила немецкая компания Rheinmetall. Лазерный комплекс HEL (High-Energy Laser) установили на бронетранспортер Boxer. Комплекс способен обнаруживать, сопровождать и уничтожать цели — как в воздухе, так и на земле. Мощности достаточно для уничтожения беспилотников и ракет малой дальности.

Перспективы

Известный эксперт в области перспективных вооружений Андрей Шалыгин рассказывает: — Лазерное оружие является оружием буквально прямой видимости. Цель нужно обнаружить на прямой линии, навести на нее лазер и устойчиво сопровождать, чтобы успеть передать количество энергии, достаточное для повреждения. Соответственно, загоризонтное поражение невозможно, устойчивое гарантированное поражение на больших дистанциях — тоже невозможно. Для больших дистанций установка должна быть поднята как можно выше. Поражение маневрирующих целей затруднено, поражение экранированных целей затруднено… В цифрах все это выглядит слишком банально, чтобы вообще об этом говорить всерьез, по сравнению даже с примитивными действующими системами ПВО.

Кроме этого существуют два фактора, которые еще более усложняют ситуацию. Энерговооруженность носителя такого оружия в сегодняшних условиях должна быть огромна. Это делает всю систему либо чрезвычайно громоздкой, либо чрезвычайно дорогой, либо имеющей массу других недостатков вроде малого суммарного времени нахождения в боевой готовности, большого времени приведения в боевую готовность, огромной стоимости выстрела и так далее. Вторым существенным фактором,ограничивающим действие лазерного оружия, является оптическая неоднородность среды. В примитивном понимании — любая заурядная непогода с осадками делает применение такого оружия ниже уровня облачности совершенно бесполезным занятием, а защита от него в нижних слоях атмосферы представляется весьма простой.

Поэтому пока не приходится говорить о том, что образцы любого ноу-хау в лазерном оружии в обозримом будущем смогут стать чем-то большим, нежели не самое лучшее оружие ближнего боя для корабельных группировок в хорошую погоду и для авиационных дуэлей, проходящих выше уровня облачности. Как правило, экзотические системы вооружения являются одним из самых эффективных способов «сравнительно честного» зарабатывания денег лоббистами. Поэтому в целях решения тактических задач боевыми единицами в рамках военного искусства можно легко найти десяток-другой гораздо более эффективных, дешевых и простых решений поставленных задач.

Разрабатываемые американцами системы авиационного базирования могут найти весьма ограниченное применение для локальной защиты от средств воздушного нападения выше уровня облачности. Однако стоимость таких решений значительно превышает существующие системы без всяких перспектив ее снижения, а боевые возможности существенно ниже.

С открытием материалов для конструирования сверхпроводящих систем, работающих при температурах, близких к окружающей среде, а также в случае создания компактных мобильных высокоэнергетических источников мощности, лазерные установки будут производиться и в России. Они могут пригодиться для целей ближней ПВО во флоте и применяться на надводных кораблях, для начала — в составе систем на основе таких платформ, как ЗК Пальма или АК-130-176.

В сухопутных войсках такие системы в полностью боеспособном виде известны всему миру еще со времен, когда Чубайс пытался открыто продавать их за границу. Они даже выставлялись с этой целью в рамках МАКС-2003. Например, МЛТК-50 — конверсионная разработка в интересах Газпрома, которая велась Троицким институтом инновационных и термоядерных исследований (ТРИНИТИ) и НИИЭФА имени Ефремова. Его появление на рынке, собственно, и привело к тому, что весь мир сразу внезапно продвинулся вперед в конструировании аналогичных систем. При этом в настоящее время энергетика систем позволяет иметь не сдвоенный, а обычный одиночный автомобильный модуль.

Похоже, что лазерные комплексы — это оружие не завтрашнего и даже не послезавтрашнего дня. Многие критики считают, что разработка лазерных систем — и вовсе пустая трата денег и времени, а крупные оборонные корпорации с помощью таких проектов просто осваивают новые средства. Впрочем, подобная точка зрения справедлива лишь отчасти. Возможно, боевой лазер еще нескоро станет полноценным оружием, но окончательно ставить на нем крест было бы преждевременно.

2684

США провели в Персидском заливе испытания нового вида оружия - лазерную систему под название LaWS (Laser Weapons System). Она была установлена на десантном корабле USS Ponse. В ходе испытаний военные сбили беспилотник, сообщает телеканал CNN , журналисты которого стали свидетелями события.

Телеканал утверждает, что речь идет о "первом в мире активном лазерном оружии". В материале отмечается, что речь идет не об экспериментальном образце, а о полноценном оружии, готовом к использованию в любой момент.

В качестве цели для тестирования был выбран беспилотный самолет - оружие, которое, по выражению CNN, "все чаще используется Ираном, Северной Кореей, Китаем, Россией и другими противниками" США. После попадания по нему лазерным лучом самолет упал в море.

Видеокадры этого и других моментов испытаний телеканал опубликовал в Сети. Помимо дрона лазер также успешно уничтожил небольшие мишени, установленные на борту движущегося корабля.

Военные отмечают, что по сравнению с другими видами оружия LaWS обладает целым рядом преимуществ. Так, например, стрельба из него не требует предварительной подготовки. "Нам не надо вести цель. Надо просто прицелиться и выстрелить", - рассказал журналистам управляющий системой лейтенант ВМС США Кейл Хьюз.

По данным CNN, LaWS способна поражать объекты "со скоростью света" и является в 50 тысяч раз быстрее межконтинентальных баллистических ракет (МБР). Выстрел из установки производится беззвучно и незаметно, так как пушка действует в невидимой части электромагнитного спектра.

При этом система "невероятно эффективна". Капитан ВМС США Кристофер Уэлл отметил, что лазер действует "точнее, чем пуля". Еще один плюс - значительное снижение побочного ущерба.

При использовании лазерной пушки военным также не надо учитывать погодные условия. Для работы системе требуется лишь электричество, которое она получает из собственного генератора.

При этом нет необходимости ни в каких боеприпасах. Пушка выстреливает фотонами, которые при соприкосновении с мишенью нагревают ее до нескольких тысяч градусов, из-за чего объект разрушается.

Управлять пушкой может команда из трех человек. Ее стоимость составляет около 40 миллионов долларов, а стоимость одного выстрела равна примерно одному доллару.

По словам Уэлла, испытанная установка "является универсальной и может быть использована против различных целей". По данным CNN, ВМС США сейчас разрабатывают лазерные системы второго поколения, которые помимо воздушных целей и небольших кораблей смогут уничтожать ракеты. На вопрос о том, сможет ли LaWS сбить ракету, он ответил "может быть".

Эксперт Минобороны: лазерное оружие США не представляет угрозы для России

Испытания американцев прокомментировали в России. Так, военный эксперт, член Общественного совета при Минобороны РФ Игорь Коротченко заявил, что не видит в произошедшем угрозы для ВМФ России.

По его мнению, американская техника действительно интересна, но она имеет ряд недостатков, которые проявятся в условиях настоящего боя. В частности, пока она может успешно действовать лишь в идеальных погодных условиях. Большие волны, провоцирующие раскачивание морских военных кораблей, способны снизить ее эффективность, приводит мнение Коротченкова VladTime.ru .

Кроме того, подобные лазерные пушки зависимы от мощности энергоустановки судна, поэтому их крайне проблематично разместить на реальных боевых кораблях. "Либо мощности будут падать, либо дальность будет падать. Поэтому пока мы можем говорить, что это никоим образом для возможностей нашего ВМФ угрозы не несет", - заключил эксперт (цитата по ).

Другой военный эксперт Алексей Леонков рассказал ФБА "Экономика сегодня" , что испытания, проведенные США, - всего лишь демонстрация, рассчитанная на "непосвященную публику". Он отметил, что лазерная установка испытывалась в идеальных условиях - в безветренную и безоблачную погоду.

"Беспилотник-цель не маневрировал, а летел по заранее известной траектории. Да и был он пластиковым, что существенно облегчало уничтожение", - отмечает эксперт. Он также добавил, что "к проведенным испытаниям в принципе много вопросов - далеко не факт, что именно выстрел поджег крыло беспилотника". "Нет уверенности, что там не была установлена камера возгорания для обеспечения успеха выстрела", - считает специалист.

Он также отмечает, что "самая простая защита от лазерного оружия - распыление газов". Узконаправленный луч не может сквозь них пробиться. Естественной помехой успешному выстрелу лазерной установки, по словам Леонкова, может быть банальная облачность.

В России тоже ведутся разработки лазерного оружия

Напомним, об установке лазерного оружия на USS Ponce и его испытаниях сообщалось еще в 2014 году. Тогда отмечалось, что разработка нового вооружения заняла семь лет и обошлась Соединенным Штатам в 40 миллионов долларов. Еще 30 миллионов потребовалось для монтажа пушки на борт корабля.

Руководитель военно-морских исследований Мэттью Кландер отмечал, что речь идет о "первом в документированной истории случае боевого применения энергетического оружия направленного действия". По его словам, в ходе испытаний оружие "работало хорошо" и за время стрельбы пушки "ни разу не промахнулись"

Параллельно с США разработка лазерного оружия проводится и в России. Бывший начальник Генштаба ВС РФ генерал армии Юрий Балуевский утверждал, что разработка новых эффективных вооружений в РФ идет практически параллельно с американским военным планированием.

В августе 2016 года замминистра обороны России Юрий Борисов заявлял, что отдельные образцы лазерного оружия приняты на вооружение российской армии. Также он рассказал, что ведется работа над созданием не только лазерного, но и радиочастотного, пучкового, кинетического оружия.

В октябре того же года Борисов рассказывал, что уже завершена наземная отработка оборудования российского самолета А-60, который предполагается оснащать лазерным оружием. В январе 2017 года Борисов рассказывал, что в России полным ходом идет разработка гиперзвукового оружия с использованием "принципиально новых материалов".

Серийные образцы лазерного оружия приняты на вооружение российской армией. Об этом РИА Новости сообщило во вторник, 2 августа, со ссылкой на заместителя министра обороны РФ Юрия Борисова. Днем позже, 3 августа, на сайте агентства был опубликован подробный обзор, посвященный истории создания лазерного оружия и различным вариантам его применения:

Будущее наступило: эксперты рассказали об использовании лазерного оружия

МОСКВА, 3 авг — РИА Новости . Элементы лазерного оружия, о поступлении которых в Вооруженные силы (ВС) заявил заместитель министра обороны России Юрий Борисов, могут быть размещены на самолетах, колесных и гусеничных боевых машинах, а также на кораблях, считают опрошенные РИА Новости военные эксперты.

Выступая на торжественном мероприятии, посвященном 70-летию Российского федерального ядерного центра — Всероссийского научно-исследовательского института экспериментальной физики (РФЯЦ-ВНИИЭФ, Саров), Борисов отметил, что в настоящее время стало реальностью оружие на новых физических принципах.

По его словам, «это не экзотика, не экспериментальные, опытные образцы — мы уже приняли на вооружение отдельные образцы лазерного оружия».

Разработки лазерного оружия ведутся с 1950-х годов, однако о принятии его образцов на вооружение заявлено впервые.

Авиалазер как элемент национальной безопасности

Оружие на новых физических принципах, в том числе разрабатываемый в России лазер воздушного базирования, позволит надежно обеспечить безопасность страны, заявил РИА Новости член общественного совета при Минобороны России, главный редактор журнала «Национальная оборона» Игорь Коротченко.

«Что касается заявления замминистра обороны, то здесь, вероятно, речь идет о лазере воздушного базирования, прототип которого в настоящее время приступил к испытаниям», — сказал военный аналитик.

Он пояснил, что мощная лазерная установка, смонтированная на базе военно-транспортного самолета Ил-76, позволяет гарантированно поражать излучением оптико-электронные системы и различного рода датчики управления оружием на боевых самолетах, военных спутниках, наземной и морской технике потенциального противника.

«Известно, что аналогичные образцы вооружения разрабатываются и в США, однако американские «летающие лазеры» в качестве целей рассматривают иностранные межконтинентальные баллистические ракеты и их головные части. Однако особых успехов американцы здесь добиться так и не сумели, в то время как российский лазер воздушного базирования доказал свои способности успешно решать стоящие перед ним задачи», — считает эксперт.

Луч на бронешасси и палубе

Коротченко также отметил, что актуальность разработки лазерных средств поражения обусловлена, в том числе, необходимостью борьбы с различного рода беспилотными летальными аппаратами, уничтожение которых с помощью зенитно-ракетных комплексов может быть затруднительно. Боевой лазер, смонтированный на автомобильном или бронешасси, способен успешно решать такую задачу.

«Научно-технический прогресс в военной сфере неизбежно приведет к разработке и других систем вооружения, основанных на новых физических принципах — такие поисковые работы ведутся всеми передовыми в военном отношении государствами, и Россия не должна являться здесь исключением», — сказал военный эксперт.

Другой собеседник агентства — президент Академии геополитических проблем доктор военных наук Константин Сивков — предположил, что на вооружение российской армии уже могут быть приняты лазерные установки для силового подавления систем управления танковым вооружением.

«Это также могут быть образцы лазерного оружия для противоракетной обороны кораблей в ближней зоне, а также системы подавления оптико-электронных средств наблюдения и самонаведения», — сказал Сивков.

Для ослепления противника

Образцы лазерного оружия, принятые на вооружение Российской армии, будут использоваться в сухопутных войсках для ослепления оптико-электронных средств противника, считает президент Академии геополитических проблем генерал-полковник Леонид Ивашов.

«Сейчас эти образцы будут применяться, прежде всего, в сухопутных войсках как ослепляющее оружие. Лазер может засвечивать аппаратуру оптической разведки и прицельные средства. Его излучение может также нарушать работу некоторых систем управления и связи», — сказал Ивашов.

По информации Ивашова, ранее в ВС России проводились испытания боевых лазеров: мотострелковые части предполагалось оснащать лазерными излучателями, способными поражать зрение солдат противника, а в войсках ПВО — использовать установки для уничтожения лазерным лучом низколетящих целей, в том числе — крылатых ракет. Однако эти образцы не были приняты на вооружение в связи с невозможностью обеспечить их необходимыми источниками энергии.

ЛСН для всех типов вооружений

Ранее пресс-служба концерна «Радиоэлектронные технологии» (КРЭТ, входит в состав госкорпорации «Ростех») сообщила, что компания обеспечила все типы российских вооружений (наземные, воздушные, морские) высокоточными лазерными системами наведения (ЛСН).

В сообщении отмечалось, что «КРЭТ расширил номенклатуру средств применения лазерной системы наведения на наземную, воздушную и морскую военную технику». По данным пресс-службы концерна, «на предприятии концерна созданы ЛСН, обеспечивающие наведение управляемого оружия для применения в боевой машине поддержки танков, в зенитно-артиллерийском комплексе морского базирования и на ударном вертолете Ка-52».

ЛСН — это высокоточная командная система наведения оружия посредством программно-управляемого светового информационного поля с использованием технологии электронного управления лазерным лучом, отличающаяся компактностью и высокой помехоустойчивостью.

Старые физические принципы

Создание лазерного и пучкового оружия является значительно более сложным делом, чем казалось вначале, когда приступали к его созданию, заявил ранее в интервью РИА Новости глава российского Фонда перспективных исследований Андрей Григорьев.

«Когда все это только начиналось, то казалось, что лазерное, пучковое оружие будет решением всех проблем: быстро доставляется, не надо боеприпасов. Но не так все просто», — сказал Григорьев.

По его словам, оружие на так называемых «новых физических принципах» «на самом деле является оружием на старых физических принципах», которые разрабатываются уже около 50 лет. «Я, честно говоря, не ожидаю серьезных прорывов во всех этих областях. Мне все это напоминает термоядерный реактор: когда начинают по нему очередную программу, то говорят, что в ближайшие 50 лет задачу решат. Уже 50 лет решают и обещают еще за 50 лет решить», — сказал глава фонда.

Дело за размещением

Американские разработчики из компании Lockheed Martin заявили, что обладают технологиями, которые позволяют производить пригодное для боевого применения лазерное вооружение, сообщил портал Defence News.

«Технологии теперь существуют. Их можно подогнать по размеру, весу, мощности и уровню теплоизоляции так, чтобы поместить на соответствующие тактические платформы, будь то корабль, наземный транспорт или воздушная платформа», — заявил директор подразделения компании Пол Шеттак (Paul Shattuck).

Другой представитель компании Даниэль Миллер (Daniel Miller) заявил, что теперь перед исследователями стоит задача не создать само лазерное оружие, а отработать технологии его размещения на используемых на сегодняшний день носителях.

Разные лазеры

Оружие на новых физических принципах (ОНФП) — оружие, в основу создания которого положены физические процессы и явления, не использовавшиеся ранее в оружии обычном (холодном, огнестрельном) или в оружии массового поражения (ядерном, химическом, бактериологическом).

Термин носит условный характер, так как в большинстве случаев в образцах ОНФП используются известные физические принципы, а новым является их применение в оружии. В зависимости от принципа действия выделяются следующие виды ОНФП: лазерное, радиочастотное, пучковое, кинетическое оружие и иные виды оружия.

Лазер (Light Amplification by Stimulated Emission Radiation — усиление света в результате вынужденного излучения) — это оптический квантовый генератор. Лазерное оружие использует высокоэнергетическое направленное электромагнитное излучение. Его поражающее действие по цели определяется термомеханическим и ударно-импульсным воздействием, которое с учетом плотности потока лазерного излучения, может привести к временному ослеплению человека или к механическому разрушению (расплавлению или испарению) корпуса поражаемого объекта. При работе в импульсном режиме одновременно тепловое воздействие сопровождается ударным, что обусловлено возникновением плазмы.

В СССР почти получилось

В рамках Стратегической оборонной инициативы (СОИ) США планировали разместить на околоземной орбите спутники-перехватчики советских межконтинентальных баллистических ракет. В ответ СССР приступил к активной разработке лазерного оружия. Так, были построены несколько экспериментальных лазерных космических пушек. Первую пушку установили на вспомогательном судне Черноморского флота (ЧФ) «Диксон».

Для того, чтобы получить энергию не менее 50 мегаватт, дизели судна были усилены тремя реактивными авиационными двигателями. Затем при разделе ЧФ корпус «Диксона» стал собственностью Украины и, по некоторым данным, продан как металлолом в США.

В СССР также велись работы по созданию космического аппарата «Скиф», который мог бы нести лазерную пушку и обеспечивать ее энергией. Прототип космического истребителя разработки КБ «Салют» с лазерной пушкой был в 1987 году выведен на орбиту ракетой-носителем «Энергия» и сожжен в плотных слоях атмосферы по политическим мотивам — как пример отказа от гонки вооружений в космосе.

В 1977 году в ОКБ имени Г.М. Бериева начались работы по созданию летающей лаборатории «1А», на борту которой размещалась лазерная установка, предназначенная для исследования распространения лучей в верхних слоях атмосферы.

Эти работы проводились в широкой кооперации с предприятиями и научными организациями всей страны, основным из которых являлось ЦКБ «Алмаз». Базовым самолетом для создания летающей лаборатории под индексом А-60 был выбран Ил-76МД. Лазерная пушка размещалась под обтекателем, оптическая головка лазера в полете могла убираться. Верх фюзеляжа между крылом и килем был вырезан и заменен створками, которые убирались внутрь фюзеляжа, а на их место выдвигалась башенка с пушкой. Впервые летающая лабораторию «1А» поднялась в воздух в 1981 году.

По данным открытых источников, разработки боевых лазеров и элементов лазерного оружия, помимо России и США, ведутся в Израиле, Китае, Южной Корее и Японии.