Давление насыщенных паров воды сильно растёт при увеличении температуры. Поэтому при изобарическом (то есть при постоянном давлении) охлаждении воздуха с постоянной концентрацией пара наступает момент (точка росы), когда пар насыщается. При этом «лишний» пар конденсируется в виде тумана , росы или кристалликов льда . Процессы насыщения и конденсации водяного пара играют огромную роль в физике атмосферы : процессы образования облаков и образование атмосферных фронтов в значительной части определяются процессами насыщения и конденсации, теплота, выделяющаяся при конденсации атмосферного водяного пара обеспечивает энергетический механизм возникновения и развития тропических циклонов (ураганов).

Относительная влажность - единственный гигрометрический показатель воздуха, допускающий прямое приборное измерение .

Оценка относительной влажности

Относительная влажность водно-воздушной смеси может быть оценена, если известны её температура (T ) и температура точки росы (T d ), по следующей формуле:

R H = P s (T d) P s (T) × 100 % , {\displaystyle RH={{P_{s}(T_{d})} \over {P_{s}(T)}}\times 100\%,}

где P s - давление насыщенного пара для соответствующей температуры, которое может быть вычислено по формуле Ардена Бака :

P s (T) = 6.1121 exp ⁡ ((18.678 − T / 234.5) × T 257.14 + T) , {\displaystyle P_{s}(T)=6.1121\exp \left({\frac {(18.678-T/234.5)\times T}{257.14+T}}\right),}

Приближённое вычисление

Относительную влажность приближённо можно вычислить по следующей формуле:

R H ≈ 100 − 5 (T − 25 T d) . {\displaystyle R\!H\approx 100-5(T-25T_{d}).}

То есть, с каждым градусом Цельсия разницы температуры воздуха и температуры точки росы относительная влажность уменьшается на 5%.

Дополнительно относительную влажность можно оценить по психрометрической диаграмме .

Пересыщенный водяной пар

В отсутствие центров конденсации при снижении температуры возможно образование пересыщенного состояния, то есть относительная влажность становится более 100 %. В качестве центров конденсации могут выступать ионы или частицы аэрозолей , именно на конденсации пересыщенного пара на ионах , образующихся при прохождении заряженной частицы в таком паре, основан принцип действия камеры Вильсона и диффузионных камер: капельки воды, конденсирующиеся на образовавшихся ионах, образуют видимый след (трек) заряженной частицы.

Другим примером конденсации пересыщенного водяного пара являются инверсионные следы самолётов, возникающие при конденсации пересыщенного водяного пара на частицах сажи выхлопа двигателей.

Средства и методы контроля

Для определения влажности воздуха используются приборы, которые называются психрометрами и гигрометрами . Психрометр Августа состоит из двух термометров - сухого и влажного. Влажный термометр показывает температуру ниже, чем сухой, так как его резервуар обмотан тканью, смоченной в воде, которая, испаряясь, охлаждает его. Интенсивность испарения зависит от относительной влажности воздуха. По показаниям сухого и влажного термометров находят относительную влажность воздуха по психрометрическим таблицам. В последнее время стали широко применяться интегральные датчики влажности (как правило, с выходом по напряжению), основанные на свойстве некоторых полимеров изменять свои электрические характеристики (такие, как диэлектрическая проницаемость среды) под действием содержащихся в воздухе паров воды.

Определяется комфортная для человека влажность воздуха такими документами, как ГОСТ и СНИП. Они регламентируют, что зимой в помещении оптимальная влажность для человека составляет 30-45 %, летом – 30-60 %. Данные по СНИП немного отличаются: 40-60 % для любого времени года, максимальный уровень 65 %, но для очень влажных регионов – 75 %.

Для определения и подтверждения метрологических характеристик приборов для измерения влажности применяют специальные эталонные (образцовые) установки - климатические камеры (гигростаты) или динамические генераторы влажности газов.

Значение

Относительная влажность воздуха - важный экологический показатель среды. При слишком низкой или слишком высокой влажности наблюдается быстрая утомляемость человека, ухудшение восприятия и памяти. Высыхают слизистые оболочки человека, движущиеся поверхности трескаются, образуя микротрещины, куда напрямую проникают вирусы, бактерии, микробы. Низкая относительная влажность (до 5-7 %) в помещениях квартиры, офиса отмечена в регионах с продолжительным стоянием низких отрицательных температур наружного воздуха. Обычно продолжительность до 1-2 недель при температурах ниже −20 °С приводит к высушиванию помещений. Значительным ухудшающим фактором в поддержании относительной влажности является воздухообмен при низких отрицательных температурах. Чем больше воздухообмен в помещениях, тем быстрее в этих помещениях создаётся низкая (5-7 %) относительная влажность.

Проветривание помещений в мороз с целью увеличения влажности является грубой ошибкой - это наиболее эффективный способ добиться обратного. Причина широко укоренившегося заблуждения в восприятии цифр относительной влажности, известных всем из прогнозов погоды. Это проценты от некоего числа, но это число для комнаты и улицы разное! Узнать это число можно из таблицы, связывающих температуру и абсолютную влажность. Например 100 % влажность уличного воздуха при −15 °С означает 1,6 г воды в кубометре, но этот же воздух (и эти же граммы) при +20 °С означает лишь 8 % влажности.

Пищевые продукты, строительные материалы и даже многие электронные компоненты допускается хранить в строго определённом диапазоне относительной влажности воздуха. Многие технологические процессы происходят только при строгом контроле содержания паров воды в воздухе производственного помещения.

Влажность воздуха в помещении можно изменять.

Для повышения влажности применяются увлажнители воздуха.

Функции осушения (понижения влажности) воздуха реализованы в большинстве кондиционеров и в виде отдельных приборов - осушителей воздуха.

В цветоводстве

Относительная влажность воздуха в оранжереях и используемых для культивирования растений жилых помещениях подвержена колебаниям, что обусловлено временем года, температурой воздуха, степенью и частотой поливки и опрыскивания растений, наличием увлажнителей , аквариумов или других ёмкостей с открытой поверхностью воды, системой проветривания и обогрева. Кактусы и многие суккулентные растения легче переносят сухой воздух, чем многие тропические и субтропические растения.
Как правило, для растений родиной которых являются влажные тропические леса, оптимальной является 80-95 % относительная влажность воздуха (зимой может быть снижена до 65-75 %). Для растений тёплых субтропиков - 75-80 %, холодных субтропиков - 50-75 % (левкои , цикламены , цинерарии и др.)
При содержании растений в жилых помещениях многие виды страдают от сухости воздуха. В первую очередь это отражается на

Относительная влажность

Отношение действительного значения абсолютной влажности к максимально возможному ее значению при той же температуре называется о т н о с и т е л ь н о й влажностью.

Обозначают относительную влажность φ :

Как правило, относительную влажность выражают в процентах, тогда

∙ 100, % и ∙ 100, %.

Для сухого воздуха φ = 0%, влажный насыщенный воздух имеет φ = 100%.

Увеличение относительной влажности воздуха происходит за счет добавления в него количества водяного пара. В тоже время, если охлаждать влажный воздух при неизменном парциальном давлении водяного пара, то φ будет увеличиваться вплоть до φ = 100%.

Температуру, при которой достигается состояние насыщения влаж- ного воздуха, называют т е м п е р а т у р о й т о ч к и р о с ы и обозначают t р .

При температуре ниже t р воздух будет оставаться насыщенным, избыточная же влага выпадает из влажного воздуха в виде капель воды или тумана. Это свойство положено в основу принципа определения t р прибором, называемым гигрометром.

При обработке влажного воздуха (подогрев, охлаждение) количество сухого воздуха в нем не изменяется, поэтому целесообразно все удельные величины относить к 1 кг сухого воздуха.

Массу водяного пара, приходящуюся на 1 кг сухого воздуха, называютют в л а г о с о д е р ж а н и е м.

Обозначают влагосодержание через d , измеряют в г/кг.

Из определения следует:

При допущении, что водяной пар и сухой воздух являются идеальными газами, можно записать:

p п V п = m п R п Т п и p с V c = m c R c T с.

Почленно разделим их и, учитывая особенности газовых смесей (пар и сухой воздух занимают один и тот же объем и имеют одинаковую температуру), т.е. V п = V c и T п = Т с ), получим:

(3.5)

Из уравнения (3.5) следует, что влагосодержание при заданном барометрическом давлении (р бар) зависит только от парциального давления водяного пара. В выражение (3.5) можно ввести значение относительной влажности φ: так, с учетом (3.3)

. (3.6)

Из уравнения (3.5) определим парциальное давление водяного пара во влажном воздухе через влагосодержание:

. (3.7)

3.2.2. Диаграмма id влажного воздуха

Определение параметров влажного воздуха и расчет процессов тепло- и массообмена значительно упрощается при использовании id – диаграммы, которая была предложена в 1918 г Л.К.Рамзиным. Диаграмма (рис. 3.3) построена для барометрического давления 745 мм рт. ст., т.е. 99,3 кПа (среднее годовое давление в Центральной части России), но ею можно пользоваться и при других барометрических давлениях в пределах допустимой точности.

При построении диаграммы по оси ординат отложена удельная энтальпия сухого воздуха – i, а по оси абсцисс влагосодержании – d . С целью расширения наиболее используемой для расчетов области, соответствующей насыщенному влажному воздуху, угол между осями выбран равным 135 0 . Горизонтально проведена вспомогательная ось, на которую спроецированы значения влагосодержания с наклонной оси. Хотя ось абсцисс на диаграмму обычно не наносится, изоэнтальпы идут параллельно ей, поэтому они на диаграмме изображаются наклонными прямыми. Линии d = const проведены параллельно оси ординат.

Значения d = const и i = const образуют координатную сетку, на которую наносятся линии постоянных температур (изотермы) и кривые линии относительной влажности (φ=const).

Для построения изотерм необходимо выразить энтальпию через влагосодержание. Энтальпия влажного воздуха на основании условия аддитивности выразится как

I = I c + I п .

Поделим величины данного уравнения на массу сухого воздуха, получим:

i = i c + .

Если второе слагаемое умножить и разделить на массу пара, то будем иметь:

(3.8)

Отсчитывая энтальпию от 0 0 С, выражение (3.8) можно записать:

i = c pc t + d (r 0 + c p п t ), (3.9)

где c pc и c p п – массовые теплоемкости сухого воздуха и пара;

r 0 – теплота фазового перехода воды в пар при 0 0 С;

t – текущее значение температуры.

При допущении, что теплоемкости сухого воздуха и пара в диапазоне измеряемых температур постоянны, для фиксированного t уравнение (3.9) представляет линейную зависимость i от d. Следовательно, изотермы в координатах i d будут прямыми линиями.

Используя выражение (3.6) и табличные зависимости давления насыщенного пара от температуры p н = f(t), несложно построить кривые относительной влажности. Так, при построении кривой для конкретного φ выбирают несколько значений температур, из таблиц для них определяют p н и по (3.6) вычисляют d. Соединив точки с координатами t i , d i линией, получим кривую φ = const. Линии (φ = const) имеют вид расходящихся кривых, которые претерпевают излом при t = 99,4 0 С (температура кипения воды при давлении 745 мм рт. ст), и дальше идут вертикально. Кривая φ=100% делит площадь диаграммы на две части. Выше кривой располагается область влажного воздуха с ненасыщенным паром, а ниже – область влажного воздуха с насыщенным и частично – с конденсированным паром. Изотермы, соответствующие температурам адиабатного насыщения воздуха (t м), на диаграмме проходят под небольшим углом к изоэнтальпам и изображены пунктирными линиями. Они измеряются "мокрым" термометром и обозначаются t м. На кривой φ = 100 % в одной точке пересекаются изотермы сухого и мокрого термометров. В нижней части диаграммы по уравнению (3.7) построена зависимость р п = f(d) для р бар = 745 мм рт ст.

По id-диаграмме, зная два любых параметра, можно определит все остальные параметры влажного воздуха. Так, например, для состояния A

(см рис. 3.6) имеем t a , i a , φ a , d a , p па, t p . Значения температуры t a , энтальпии i a и влагосодержания d a есть проекция точки А на оси i, d и t. Величина относительной влажности характеризуется значением на кривой, проходящей через данное состояние.

Для определения температуры точки росы необходимо точку A спроецировать на кривую φ = 100%. Изотерма, проходящая через эту проекцию, дает значение t p . Давление пара определяется по влагосодержанию d a и линией p п = f(d).

При нагревании воздуха его влагосодержание не изменяется (d=const), а энтальпия возрастает, поэтому процесс нагрева на id-диаграмме изображается вертикальной прямой AB.

Процесс охлаждения воздуха также происходит при d=const; энтальпия уменьшается (линия CE), а относительная влажность возрастает вплоть до точки росы, являющейся пересечением прямой охлаждения CE с кривой φ = 100 %.



В процессе сушки материала воздух увлажняется. Если при этом теплота, истраченная на испарение влаги, берется из воздуха, то этот процесс приближенно (без учета энтальпии воды) считают изоэнтальпным, так как израсходованная теплота снова возвращается воздуху вместе с испаренной влагой. Поэтому на id – диаграмме процесс сушки изображается прямой CR, параллельной линиям i = const.

При увлажнении воздуха паром (линия КМ) энтальпия влажного воздуха увеличивается. Параметры состояния (i м, d м) определяются по начальным (i к, d к),. из теплового и материального балансов процесса смешения

i м = i к + d п i п и d м = d к + d п,

где i п и d п – энтальпия и количество подаваемого пара на 1 кг сухого воздуха, соответственно.

При смешивании потоков влажного воздуха параметры смеси определяются на основании балансов массы, энтальпии и влаги. Если расходы влажного воздуха в смешиваемых потоках и , а энтальпии и влагосодержания, соответственно, i 1 , d 1 и i 2 , d 2 , то уравнения для определения энтальпии и влагосодержания смеси следующие:

i см = (i 1 m 1 + i 2 m 2)/(m 1 +m 2) ,

d см = (d 1 m 1 +d 2 m 2)/(m 1 +m 2).

При смешении двух потоков воздуха относительная влажность смеси не может быть больше 100 %.

Рассмотрим теперь устройство и принцип действия психрометра – более точного прибора для измерения влажности воздуха. Психрометр имеет два термометра: сухой и влажный. Они так называются потому, что конец одного из термометров находится в воздухе, а конец второго обвязан кусочком марли, погруженным в воду (см. рисунок). Испарение воды с поверхности марли приводит к понижению её температуры. Второй же, «сухой» термометр показывает обычную температуру воздуха. Измеренные психрометром значения температур перевести в значение относительной влажности воздуха можно по таблице (см. ниже).

Сухой термометр, °C Разность показаний термометров, °С
1 2 3 4 5 6 7 8 9
Относительная влажность, %
18 91 82 73 65 56 49 41 34 27
20 91 83 74 66 59 51 44 37 30
22 92 83 76 68 61 54 47 40 34
24 92 84 77 69 62 56 49 43 37

Рассмотрим пример. Допустим, в комнате температура 20 °С, а влажный термометр показывает 15 °С. То есть разность показаний термометров 5 °С. В таблице, по строке «20», движемся до колонки «5». Читаем там число: 59. Следовательно, относительная влажность воздуха в той комнате, где висит психрометр, составляет именно 59 %.

Если в воздухе, где находится психрометр, мало водяных паров, то парообразование с поверхности марли идёт интенсивно. Согласно формуле Q=rm (см. § 6-г), на это расходуется теплота «отбираемая» у воды на марле, и она охлаждается согласно формуле $Q=C\cdot m\cdot \Delta t^o$ (см. § 6-в). Поэтому влажный термометр показывает меньшую температуру, чем сухой. Если воздух настолько влажный, что содержащийся в нём водяной пар является насыщенным, то испарения воды с поверхности марли не будет. Следовательно, оба термометра будут показывать равные температуры, и это будет означать, что относительная влажность воздуха равна 100%.

Проверьте, как вы усвоили материал:

  1. Цель этого параграфа – рассмотреть...
  2. Влажность воздуха важна не только для здоровья человека, но и для...
  3. Почему важно, чтобы содержащийся в воздухе водяной пар не был (почти) насыщенным?
  4. Вводимая нами новая физическая величина должна показывать, ...
  5. Относительная влажность воздуха вычисляется отношением плотности водяного пара в воздухе к...
  6. Волосяной гигрометр является...
  7. На изменение относительной влажности воздуха в гигрометре реагирует...
  8. Гигрометр позволяет (способен) измерять относительную влажность воздуха, так как...
  9. Удобство использования гигрометра для измерений влажности состоит в том, что его стрелка...
  10. Вместо гигрометра часто применяют психрометр в качестве...
  11. Почему правый термометр психрометра обычно показывает более низкую температуру?
  12. Специально составленную так называемую психрометрическую таблицу, применяют, чтобы...
  13. Если температура воздуха в комнате 30 °С, а на влажном термометре 25 °С, то...
  14. При каком условии испарение воды с поверхности марли идёт быстро?
  15. Влажная марля, а вместе с ней и правый термометр охлаждаются, так как...
  16. При каком условии оба термометра будут показывать равные температуры?

Влажность воздуха – это содержание парообразной воды в атмосфере. Эта характеристика во многом определяет самочувствие многих живых существ, а также влияет на погоду и климатические условия на нашей планете. Для нормальной работы человеческого организма она должна находиться в определённом диапазоне, вне независимости от температуры воздуха. Известны две основных характеристики влажности воздуха – абсолютная и относительная:

  • Абсолютная влажность – это масса водяного пара, содержащаяся в одном кубическом метре воздуха. Единица измерения абсолютной влажности - г/м3. Относительная влажность определяется как отношение текущего и максимального значения абсолютной влажности при определенной температуре воздуха.
  • Относительную влажность принято измерять в %. По мере увеличения температуры абсолютная влажность воздуха также растет от 0,3 при -30°С до 600 при +100°С. Величина относительной влажности зависит в основном от климатических зон Земли (средние, экваториальные или полярные широты) и сезона года (осень, зима, весна, лето).

Существуют вспомогательные термины для определения влажности. Например, влагосодержание (г/кг), т.е. вес водяных паров на один килограмм воздуха. Или температура «точки росы», когда воздух считается полностью насыщенным, т.е. его относительная влажность равна 100%. В природе и холодильной технике это явление можно наблюдать на поверхностях тел, температура которых меньше температуры точки росы в виде капель воды (конденсата), изморози или инея.

Энтальпия

Также существует такое понятие, как энтальпия. Энтальпия - это свойство тела (вещества), определяющее количество энергии, сохраненной в его молекулярной структуре, которая доступна для преобразования в теплоту при определённой температуре и давлении. Но не всю энергию можно преобразовать в теплоту, т.к. часть внутренней энергии тела остается в веществе для поддержания его молекулярной структуры.

Расчет влажности

Для расчета значений влажности применяют несложные формулы. Так, абсолютную влажность принято обозначать p и определять как


p = m вод. пара / V воздуха

где m вод. пара – масса водяного пара (г)
V воздуха - объем воздуха (м 3), в котором он содержится.

Общепринятое обозначение относительной влажности - φ. Относительную влажность рассчитывают по формуле:


φ = (p/p н) * 100%


где p и p н – текущее и максимальное значение абсолютной влажности. Наиболее часто применяется величина относительной влажности, так как на состояние человеческого организма в большей степени влияет не вес влаги в объеме воздуха (абсолютная влажность), а именно относительное содержание воды.

Влажность весьма важна для нормальной жизнедеятельности практически всех живых существ и, в особенности - человека. Ее величина (по опытным данным) должна находиться в пределах от 30 до 65%, вне зависимости от температуры. Например, низкая влажность зимой (по причине малого количества воды в воздухе) приводит к пересыханию у человека всех слизистых оболочек, тем самым увеличивается риск простудных заболеваний. Высокая влажность наоборот, ухудшает процессы терморегуляции и потоотделения через кожные покровы. При этом появляется ощущение духоты. Кроме того, поддержание влажности воздуха является важнейшим фактором:

  • для проведения многих технологических процессов на производстве;
  • эксплуатации механизмов и устройств;
  • сохранности от разрушения строительных конструкций зданий, элементов интерьера из древесины (мебели, паркета и т.п.), археологических и музейных артефактов.

Расчет энтальпии

Энтальпия это потенциальная энергия, которая содержится в одном килограмме влажного воздуха. Причем при равновесном состоянии газа она не поглощается и не излучается во внешнюю среду. Энтальпия влажного воздуха равна сумме энтальпий составляющих его частей: абсолютно сухого воздуха, а также паров воды. Ее величину рассчитывают по следующей формуле:


I = t + 0,001(2500 +1,93t)d


Где t – температура воздуха (°С), а d – его влагосодержание (г/кг). Энтальпия (кДж/кг) является удельной величиной.

Температура по мокрому термометру

Температура по мокрому термометру – это такое ее значение, при котором идет процесс адиабатного (энтальпия постоянна) насыщения воздуха парами воды. Для определения ее конкретного значения используют I – d диаграмму. Вначале на нее наносят точку, соответствующую заданному состоянию воздуха. Затем через эту точку проводят луч адиабаты, пересекая его с линией насыщения (φ = 100%). А уже из точки их пересечения опускают проекцию в виде отрезка с постоянной температурой (изотерма) и получают температуру мокрого термометра.

I-d диаграмма является основным инструментом для расчетов/построений разных процессов, связанных с изменением состояния воздуха – нагрева, охлаждения, осушения и увлажнения. Ее появление значительно облегчило понимание процессов, происходящих в системах и агрегатах для сжатия воздуха, вентиляции и кондиционирования. Эта диаграмма графически показывает полную взаимозависимость основных параметров (температуры, относительной влажности, влагосодержания, энтальпии и парциального давления паров воды), определяющих тепло-влажностный баланс. Все значения указаны при определенном значении атмосферного давления. Обычно это 98 кПа.

Диаграмма выполнена в системе косоугольных координат, т.е. угол между ее осями составляет 135°. Это способствует увеличению зоны ненасыщенного влажного воздуха (φ = 5 – 99%) и сильно облегчает графическое нанесение происходящих с воздухом процессов. На диаграмме представлены следующие линии:

  • криволинейные - влажности (от 5 до 100%).
  • прямые - постоянной энтальпии, температуры, парциального давления и влагосодержания.

Ниже кривой φ = 100% воздух полностью насыщен влагой, находящейся в нем в виде жидкости (вода) или твердом (иней, снег, лед) состоянии. Определить состояние воздуха во всех точках диаграммы можно, зная любые два его параметра (из четырех возможных). Графическое построение процесса изменения состояния воздуха значительно облегчается с помощью дополнительно нанесенной круговой диаграммы. На ней под разными углами показаны значения тепло-влажностного отношения ε. Эта величина определяется наклоном луча процесса и рассчитывается как:

где Q – теплота (кДж/кг) и W - влага (кг/ч), поглощаемые или выделяемые из воздуха. Значение ε делит всю диаграмму на четыре сектора:

  • ε = +∞ … 0 (нагрев + увлажнение).
  • ε = 0 … -∞ (охлаждение + увлажнение).
  • ε = -∞ … 0 (охлаждение + осушение).
  • ε = 0 … +∞ (нагрев + осушение).

Измерение влажности

Измерительные приборы для определения значений относительной влажности называются гигрометрами. Для замера величины влажности воздуха используют несколько основных методов. Рассмотрим три из них.

  1. Для сравнительно неточных замеров в быту применяют волосяные гигрометры. В них чувствительным элементом является конский или человеческий волос, который в натянутом состоянии установлен в стальную рамку. Оказалось, что этот волос в обезжиренном виде способен чутко реагировать на малейшие изменения относительной влажности воздуха, изменяя свою длину. По мере увеличения влажности волос удлиняется, при уменьшении – наоборот, укорачивается. Стальная рамка, на которой закреплен волос, связана со стрелкой прибора. Стрелка воспринимает от рамки изменение размера волоска и вращается вокруг своей оси. При этом она указывает на градуированной шкале (в %) относительную влажность.
  2. При более точных теплотехнических измерениях во время научных исследований применяют гигрометры конденсационного типа и психрометры. Они осуществляют косвенный замер относительной влажности. Гигрометр конденсационного типа изготовлен в виде закрытой цилиндрической емкости. Одна из ее плоских крышек отполирована до состояния зеркала. Внутрь емкости устанавливают термометр и наливают какую-нибудь легкокипящую жидкость, например эфир. Затем ручным резиновым диафрагменным насосом в емкость закачивается воздух, который начинает там интенсивно циркулировать. Из-за этого эфир вскипает, понижает температуру (охлаждает) поверхность емкости и ее зеркало соответственно. На зеркале появятся капли воды, сконденсированной из воздуха. В этот момент времени необходимо зафиксировать показания термометра, который покажет температуру «точки росы». Потом с помощью специальной таблицы определяют соответственную плотность насыщенного пара. А по ним уже и величину относительной влажности.
  3. Психрометрический гигрометр это пара термометров, установленных на основание с общей шкалой. Один из них называют сухим, он измеряет действительную температуру воздуха. Второй называют – мокрым. Температура мокрого термометра – это температура, которую принимает влажный воздух при достижении насыщенного состояния и сохранении постоянной энтальпии воздуха, равной начальной, т. е. это предельная температура адиабатического охлаждения. У мокрого термометра шарик оборачивают тканью из батиста, которую погружают в емкость с водой. На ткани происходит испарение воды, что ведет к понижению температуры воздуха. Этот процесс охлаждения идет до момента, когда воздух вокруг шарика не станет полностью насыщенным (т.е. с относительной влажностью 100%). Этот термометр покажет «точку росы». На шкале прибора имеется и т.н. психрометрическая таблица. С ее помощью по данным сухого термометра и разности температур (сухой минус мокрый) определяют текущее значение относительной влажности.

Регулирование влажности

Для повышения влажности (увлажнения воздуха) применяют увлажнители. Увлажнители отличаются большим разнообразием, которое определяется способом увлажнения и дизайном. По способу увлажнения увлажнители делятся на: адиабатические (форсуночные) и паровые. В паровых увлажнителях водяной пар образуется при нагреве воды на электродах. Как правило, в быту наиболее часто используются паровые увлажнители. В системах вентиляции и центрального кондиционирования применяются увлажнители как парового, так и форсуночного типа. В промышленных вентиляционных системах увлажнители могут размещаться как непосредственно в самих вентиляционных установках, так и в виде отдельной секции в вентиляционном канале.

Наиболее эффективный метод удаления влаги из воздуха реализуется при помощи на базе компрессорных холодильных машин. Они осушают воздух путем конденсации водяных паров на охлажденной поверхности теплообменника испарителя. Причем его температура должна быть ниже «точки росы». Собранная таким способом влага самотеком или с помощью насоса удаляется наружу по дренажной трубе. Существуют различных типов и назначений. По типам осушители делятся на моноблочные и с выносным конденсатором. По назначению осушители делятся на:

  • бытовые мобильные;
  • профессиональные;
  • стационарные для бассейнов.

Основная задача систем осушения – обеспечивать благоприятное самочувствие находящихся внутри людей и безопасную эксплуатацию конструктивных элементов зданий. Особенно важно поддерживать уровень влажности в помещениях с повышенным выделением влаги, таких как бассейны, аквапарки, банные и SPA-комплексы. Воздух в бассейне имеет повышенную влажность из-за интенсивных процессов испарения воды с поверхности чаши. Поэтому избыток влаги - определяющий фактор при . Избыток влаги, а также наличие в воздухе агрессивных сред, как например, соединения хлора оказывают разрушительное воздействия на элементы строительных конструкций и отделку в помещении. Влага конденсируется на них, вызывая появление плесневых грибков или коррозионное разрушение металлических элементов.

По этим причинам рекомендуемая величина относительной влажности воздуха внутри бассейна должна поддерживаться в диапазоне 50 – 60%. Строительные консьтрукции, в частности стены и остекленные поверхности помещения бассейна следует дополнительно защитить от выпадения влаги на них. Это можно реализовать путем подачи на них потока приточного воздуха, причем обязательно в направлении снизу-вверх. Снаружи здание должно иметь слой высокоэффективной тепловой изоляции. Для достижения дополнительных преимуществ настоятельно рекомендуем применять разнообразные осушители воздуха, но только лишь в комбинации с оптимально рассчитанными и подобранными


Влажность воздуха является важной характеристикой окружающей среды. Но не все до конца понимают, что подразумевается под подаваемых в сводках погоды. и абсолютная влажность - это связанные понятия. Разобраться в сути одного без понимания другого не представляется возможным.

Воздух и влага

Воздух содержит смесь веществ, находящихся в газообразном состоянии. В первую очередь это азот и кислород. Их в общем составе (100 %) содержится приблизительно 75 % и 23 % по массе соответственно. Около 1,3 % аргона, менее 0,05 % - это углекислый газ. Остаток (недостающая около 0,005% суммарно) приходится на долю ксенона, водорода, криптона, гелия, метана и неона.

Также в воздухе постоянно содержится какое-то количество влаги. В атмосферу она попадает после испарения молекул воды из мирового океана, с увлажненной почвы. В замкнутом пространстве содержание ее может отличаться от внешней среды и зависит от наличия дополнительных источников поступления и потребления.

Для более точного определения физических характеристик и количественных показателей применяется два понятия: относительная влажность и абсолютная влажность. В быту избыточный образуется при сушке белья, в процессе приготовления пищи. Люди и животные выделяют его с дыханием, растения в результате газообмена. В производстве изменение соотношения водяного пара может быть связано с конденсацией при перепаде температур.

Абсолютная и особенности употребления термина

Насколько важны знания точного количества водяного пара в атмосфере? По этим параметрам рассчитываются прогнозы погоды, возможности выпадения осадков и их объем, пути перемещения фронтов. На базе этого определяются риски возникновения циклонов и особенно ураганов, могущих представлять серьезную опасность для региона.

В чем разница двух понятий? Общее то, что и относительная влажность, и абсолютная влажность показывают содержание в воздухе водяного пара. Но первый показатель определяется расчетным путем. Второй же может быть измерен физическими методами с результатом в г/м 3 .

Однако с изменением температуры окружающей среды эти показатели меняются. Известно, что в воздухе максимально может содержаться определенное количество водяного пара - абсолютная влажность. Но для режимов +1°C и +10°C эти значения будут разными.

Зависимость количественного содержания водяного пара в воздухе от температуры отображается в показателе относительной влажности. Она рассчитывается по формуле. Результат выражается в процентном соотношении (объективный показатель от максимально возможного значения).

Влияние условий среды

Как изменится абсолютная и относительная влажность воздуха с повышением температуры, к примеру, с +15°C до +25°C? С ее увеличением давление водяного пара вырастает. А значит, в единице объема (1 м куб.) молекул воды поместится больше. Следовательно, вырастает и абсолютная влажность. Относительная при этом снизится. Это объясняется тем, что фактическое содержание водяного пара осталось на том же уровне, а максимально возможное значение увеличилось. По формуле (разделив одно на другое и умножив результат на 100 %) в итоге получится уменьшение показателя.

Как изменится абсолютная и относительная влажность при понижении температуры? Что происходит при уменьшении с +15°C до +5°C? Абсолютная влажность при этом снизится. Соответственно в 1 м куб. воздушной смеси водяного пара максимально может поместиться меньшее количество. Расчет по формуле покажет увеличение итогового показателя - процент относительной влажности увеличится.

Значение для человека

При наличии избыточного количества паров воды чувствуется духота, при недостатке - ощущается сухость кожных покровов и жажда. Очевидно, что влажность сырого воздуха выше. При избытке лишняя вода не удерживается в газообразном состоянии и переходит в жидкую или твердую среду. В атмосфере она устремляется вниз, это проявляется осадками (туман, изморозь). В помещении на предметах интерьера образуется слой конденсата, на поверхности травы по утрам роса.

Повышение температуры легче переносить в сухом помещении. Однако тот же режим, но при относительной влажности выше 90 % вызывает быстрое перегревание тела. Организм борется с этим явлением одинаково - происходит выделение тепла с потом. Но на сухом воздухе он быстро испаряется (высыхает) с поверхности тела. Во влажной среде этого практически не происходит. Наиболее подходящий (комфортный) для человека режим - это 40-60 %.

Для чего это необходимо? В сыпучих материалах в сырую погоду содержание сухого вещества в единице объема уменьшается. Эта разница не столь существенна, но при больших объемах может «вылиться» в реально определяемое количество.

Продукция (зерно, мука, цемент) имеет допустимый порог влажности, при которой она может храниться без потери качества или технологических свойств. Поэтому контроль показателей и поддержание их на оптимальном уровне обязательны для хранилищ. Снижением влажности в воздухе добиваются уменьшения ее и в продукции.

Приборы

На практике фактическая влажность измеряется гигрометрами. Раньше существовало два подхода. Один основан на изменении растяжимости волоса (человеческий или животного). Другой - на разности показаний термометров в сухой и влажной среде (психрометрический).

В волосном гигрометре стрелка механизма связана с натянутым на рамке волосом. Он в зависимости от влажности окружающего воздуха меняет физические свойства. Стрелка отклоняется от эталонного значения. Ее перемещения отслеживаются по нанесенной шкале.

Относительная влажность и абсолютная влажность воздуха, как известно, зависят от температуры окружающей среды. Эта особенность используется в психрометре. При определении снимаются показания двух рядом расположенных термометров. Колба одного (сухого) находится в обычных условиях. У другого (мокрого) она окутана фитилем, который связан с резервуаром с водой.

В таких условиях термометр измеряет среду с учетом испаряющейся влаги. А этот показатель зависит от количества водяного пара в воздухе. Определяется разность показаний. Значение относительной влажности определяется по специальным таблицам.

В последнее время большее применение имеют датчики, использующие изменения электрических характеристик определенных материалов. Для подтверждения результатов и сверки приборов существуют эталонные установки.