Водородный показатель , pH (лат. p ondus Hydrogenii — «вес водорода», произносится «пэ аш» ) — мера активности (в сильно разбавленных растворах эквивалентна концентрации) ионов водорода в растворе, которая количественно выражает его кислотность. Равен по модулю и противоположен по знаку десятичному логарифму активности водородных ионов, которая выражена в молях на один литр:

История водородного показателя pH .

Понятие водородного показателя введено датским химиком Сёренсеном в 1909 году. Показатель называется pH (по первым буквам латинских слов potentia hydrogeni — сила водорода, либо pondus hydrogeni — вес водорода). В химии сочетанием pX обычно обозначают величину, которая равна lg X , а буквой H в этом случае обозначают концентрацию ионов водорода (H + ), либо, вернее, термодинамическую активность гидроксоний-ионов.

Уравнения, связывающие pH и pOH .

Вывод значения pH .

В чистой воде при 25 °C концентрации ионов водорода ([H + ]) и гидроксид-ионов ([OH − ]) оказываются одинаковыми и равняются 10 −7 моль/л, это четко следует из определения ионного произведения воды, равное [H + ] · [OH − ] и равно 10 −14 моль²/л² (при 25 °C).

Если концентрации двух видов ионов в растворе окажутся одинаковыми, в таком случае говорится, что у раствора нейтральная реакция. При добавлении кислоты к воде, концентрация ионов водорода возрастает, а концентрация гидроксид-ионов понижается, при добавлении основания — напротив, увеличивается содержание гидроксид-ионов, а концентрация ионов водорода уменьшается. Когда [H + ] > [OH − ] говорится, что раствор оказывается кислым, а при [OH − ] > [H + ] — щелочным.

Чтоб было удобнее представлять, для избавления от отрицательного показателя степени, вместо концентраций ионов водорода используют их десятичный логарифм, который берется с противоположным знаком, являющийся водородным показателем — pH .

Показатель основности раствора pOH .

Немного меньшую популяризацию имеет обратная pH величина — показатель основности раствора , pOH , которая равняется десятичному логарифму (отрицательному) концентрации в растворе ионов OH − :

как во всяком водном растворе при 25 °C , значит, при этой температуре:

Значения pH в растворах различной кислотности.

  • Вразрез с распространённым мнением, pH может изменяться кроме интервала 0 - 14, также может и выходить за эти пределы. Например, при концентрации ионов водорода [H + ] = 10 −15 моль/л, pH = 15, при концентрации ионов гидроксида 10 моль /л pOH = −1 .

Т.к. при 25 °C (стандартных условиях) [H + ] [OH − ] = 10 14 , то ясно, что при такой температуре pH + pOH = 14 .

Т.к. в кислых растворах [H + ] > 10 −7 , значит, у кислых растворов pH < 7, соответственно, у щелочных растворов pH > 7 , pH нейтральных растворов равняется 7. При более высоких температурах константа электролитической диссоциации воды увеличивается, значит, увеличивается ионное произведение воды, тогда нейтральной будет pH = 7 (что соответствует одновременно возросшим концентрациям как H + , так и OH −); с понижением температуры, наоборот, нейтральная pH увеличивается.

Методы определения значения pH .

Существует несколько методов определения значения pH растворов. Водородный показатель приблизительно оценивают при помощи индикаторов, точно измерять при помощи pH -метра либо определять аналитическим путём, проводя кислотно-основное титрование.

  1. Для грубой оценки концентрации водородных ионов часто используют кислотно-основные индикаторы — органические вещества-красители, цвет которых зависит от pH среды. Самые популярные индикаторы: лакмус, фенолфталеин, метиловый оранжевый (метилоранж) и др. Индикаторы могут быть в 2х по-разному окрашенных формах — или в кислотной, или в основной. Изменение цвета всех индикаторов происходит в своём интервале кислотности, зачастую составляющем 1-2 единицы.
  2. Для увеличения рабочего интервала измерения pH применяют универсальный индикатор , который является смесью из нескольких индикаторов. Универсальный индикатор последовательно изменяет цвет с красного через жёлтый, зелёный, синий до фиолетового при переходе из кислой области в щелочную. Определения pH индикаторным способом затруднено для мутных либо окрашенных растворов.
  3. Применение специального прибора — pH -метра — дает возможность измерять pH в более широком диапазоне и более точно (до 0,01 единицы pH ), чем при помощи индикаторов. Ионометрический метод определения pH основывается на измерении милливольтметром-ионометром ЭДС гальванической цепи, которая включает стеклянный электрод, потенциал которого зависим от концентрации ионов H + в окружающем растворе. Способ обладает высокой точностью и удобством, особенно после калибровки индикаторного электрода в избранном диапазоне рН , что дает измерять pH непрозрачных и цветных растворов и поэтому часто применяется.
  4. Аналитический объёмный метод кислотно-основное титрование — тоже даёт точные результаты определения кислотности растворов. Раствор известной концентрации (титрант) каплями добавляют к раствору, который исследуется. При их смешивании происходит химическая реакция. Точка эквивалентности — момент, когда титранта точно хватает, для полного завершения реакции, — фиксируется при помощи индикатора. После этого, если известна концентрация и объём добавленного раствора титранта, определяется кислотность раствора.
  5. pH :

0,001 моль/Л HCl при 20 °C имеет pH=3 , при 30 °C pH=3,

0,001 моль/Л NaOH при 20 °C имеет pH=11,73 , при 30 °C pH=10,83,

Влияние температуры на значения pH объясняют разчной диссоциацией ионов водорода (H +) и не есть ошибкой эксперимента. Температурный эффект нельзя компенсировать за счет электроники pH -метра.

Роль pH в химии и биологии.

Кислотность среды имеет важное значение для большинства химических процессов, и возможность протекания либо результат той или иной реакции зачастую зависит от pH среды. Для поддержания определённого значения pH в реакционной системе при проведении лабораторных исследований либо на производстве применяют буферные растворы, позволяющие сохранять почти постоянное значение pH при разбавлении либо при добавлении в раствор маленьких количеств кислоты либо щёлочи.

Водородный показатель pH часто применяют для характеристики кислотно-основных свойств разных биологических сред.

Для биохимических реакций сильное значение имеет кислотность реакционной среды, протекающих в живых системах. Концентрация в растворе ионов водорода зачастую оказывает влияние на физико-химические свойства и биологическую активность белков и нуклеиновых кислот, поэтому для нормального функционирования организма поддержание кислотно-основного гомеостаза является задачей исключительной важности. Динамическое поддержание оптимального pH биологических жидкостей достигается под действием буферных систем организма.

В человеческом организме в разных органах водородный показатель оказывается разным.

Некоторые значения pH.

Вещество

Электролит в свинцовых аккумуляторах

Желудочный сок

Лимонный сок (5% р-р лимонной кислоты)

Пищевой уксус

Кока-кола

Яблочный сок

Кожа здорового человека

Кислотный дождь

Питьевая вода

Чистая вода при 25 °C

Морская вода

Мыло (жировое) для рук

Нашатырный спирт

Отбеливатель (хлорная известь)

Концентрированные растворы щелочей

Вода является слабым электролитом; она слабо диссоциирует по уравнению

При 25 °С в 1 л воды распадается на ионы 10-7 моль H2O. Концентрация ионов H+ и OH- (в моль/л) будет равна

Чистая вода имеет нейтральную реакцию. При добавлении в нее кислоты концентрация ионов H+ увеличивается, т.е. > 10-7 моль/л; концентрация ионов OH- уменьшается, т.е. меньше 10-7 моль/л. При добавлении щелочи концентрация ионов OH- увеличивается: > 10-7 моль/л, следовательно, меньше 10-7 моль/л.

На практике для выражения кислотности или щелочности раствора вместо концентрации используют ее отрицательный десятичный логарифм, который называют водородным показателем pH:

В нейтральной воде pH = 7. Значения pH и соответствующие им концентрации ионов H+ и OH- приведены в табл. 4.

Буферные растворы

Многие аналитические реакции проводят при строго определенном значении pH, которое должно сохраниться в течение всего времени проведения реакции. В ходе некоторых реакций pH может изменяться в результате связывания или высвобождения ионов H+. Для сохранения постоянного значения pH применяют буферные растворы.

Буферные растворы представляют собой чаще всего смеси слабых кислот с солями этих кислот или смеси слабых оснований с солями этих же оснований. Если, например, в ацетатный буферный раствор, состоящий из уксусной кислоты CH3COOH и ацетата натрия CH3COONa добавить некоторое количество такой сильной кислоты, как HCl, она будет реагировать с ацетат-ионами с образованием малодиссоциирующей CH3COOH:

Таким образом, добавленные в раствор ионы H+ не останутся свободными, а будут связаны ионами CH3COO-, и поэтому pH раствора почти не изменится. При добавлении раствора щелочи к ацетатному буферному раствору ионы OH- будут связаны недиссоциированными молекулами уксусной кислоты CH3COOH:

Следовательно, pH раствора и в этом случае также почти не изменится.

Буферные растворы сохраняют свое буферное действие до определенного предела, т.е. они обладают определенной буферной емкостью. Если ионов H+ или OH- оказалось в растворе больше, чем позволяет буферная емкость раствора, то pH будет изменяться в значительной степени, как и в небуферном растворе.

Обычно в методиках анализа указывается, каким именно буферным раствором следует пользоваться при выполнении данного анализа и как его следует приготовить. Буферные смеси с точным значением pH выпускают в виде в ампулах для приготовления 500 мл раствора.

pH = 1,00. Состав: 0,084 г гликокола (аминоуксусной кислоты NH2CH2COOH), 0,066 г хлорида натрия NaCl и 2,228 г соляной кислоты HCl.

pH = 2,00. Состав: 3,215 г лимонной кислоты C6H8O7-H2O, 1,224 г гидроксида натрия NaOH и 1,265 г соляной кислоты HCl.

pH = 3,00. Состав: 4,235 г лимонной кислоты C6H8O7-H2O, 1,612 г гидроксида натрия NaOH и 1,088 г соляной кислоты HCl.

pH = 4,00. Состав: 5,884 г лимонной кислоты C6H8O7-H2O, 2,240 г гидроксида натрия NaOH и 0,802 г соляной кислоты HCl.

pH = 5,00. Состав: 10,128 г лимонной кислоты C6H8O7-H2O и 3,920 г гидроксида натрия NaOH.

pH = 6,00. Состав: 6,263 г лимонной кислоты C6H8O7-H2O и 3,160 г гидроксида натрия NaOH.

pH = 7,00. Состав: 1,761 г дигидрофосфата калия KH2PO4 и 3,6325 г гидрофосфата натрия Na2HPO4-2H2O.

pH = 8,00. Состав: 3,464 г борной кислоты H3BO3, 1,117 г гидроксида натрия NaOH и 0,805 г соляной кислоты HCl.

pH = 9,00. Состав: 1,546 г борной кислоты H3BO3, 1,864 г хлорида калия, KCl и 0,426 г гидроксида натрия NaOH.

pH = 10,00. Состав: 1,546 г борной кислоты H3BO3, 1,864 г хлорида калия KCl и 0,878 г гидроксида натрия NaOH.

pH = 11,00. Состав: 2,225 г гидрофосфата натрия Na2HPO4-2H2O и 0,068 г гидроксида натрия NaOH.

pH = 12,00. Состав: 2,225 г гидрофосфата натрия Na2HPO4-2H2O и 0,446 г гидроксида натрия NaOH.

pH = 13,00. Состав: 1,864 г хлорида калия KCl и 0,942 г гидроксида натрия NaOH.

Отклонения от номинального значения pH достигают ±0,02 для растворов при pH от 1 до 10 и ±0,05 при pH от 11 до 13. Такая точность вполне достаточна для практических работ.

Для настройки pH-метров применяют стандартные буферные растворы с точными значениями pH.

1. Ацетатный буферный раствор с pH=4,62: 6,005 г уксусной кислоты CH3COOH и 8,204 г ацетата натрия CH3COONa в 1 л раствора.

2. Фосфатный буферный раствор с pH=6,88: 4,450 г гидрофосфата натрия Na2HPO4-2H2O и 3,400 г дигидрофосфата калия KH2PO4 в 1 л раствора.

3. Боратный буферный раствор с pH=9,22: 3,81 г тетрабората натрия Na2B4O7-10H2O в 1 л раствора.

4. Фосфатный буферный раствор с pH=11,00: 4,450 г гидрофосфата натрия Na2HPO4-2H2O и 0,136 г гидроксида натрия NaOH в 1 л раствора.

Для приготовления буферных растворов для агрохимического и биохимического анализа со значениями pH от 1,1 до 12,9 с интервалом в 0,1 применяют 7 основных исходных растворов.

Раствор 1. Растворяют 11,866 г гидрофосфата натрия Na2HPO4-2H2O в воде и разбавляют в мерной колбе водой до 1 л (концентрация раствора 1/15 М).

Раствор 2. Растворяют 9,073 дигидрофосфата калия KH2PO4 в 1 л воды в мерной колбе (концентрация 1/15 М).

Раствор 3. Растворяют 7,507 г гликокола (аминоуксусной кислоты) NH2CH2COOH и 5,84 г хлорида натрия NaCl в 1 л воды в мерной колбе. Из этого раствора путем смешивания с 0,1 н. раствором HCl готовят буферные растворы с pH от 1,1 до 3,5; смешиванием с 0,1 н. раствором NaOH готовят растворы с pH от 8,6 до 12,9.

Раствор 4. Растворяют 21,014 г лимонной кислоты C6H8O7-H2O в воде, добавляют к раствору 200 мл 1 н. раствора NaOH и разбавляют до 1 л водой в мерной колбе. Смешиванием этого раствора с 0,1 н. раствором HCl готовят буферные растворы с pH от 1,1 до 4,9; смешиванием с 0,1 н. раствором NaOH готовят буферные растворы с pH от 5,0 до 6,6.

Раствор 5. Растворяют 12,367 г борной кислоты H3BO3 в воде, добавляют 100 мл 1 н. раствора NaOH и разбавляют водой до 1 л в мерной колбе. Смешиванием этого раствора с 0,1 н. раствором HCl готовят буферные растворы с pH от 7,8 до 8,9; смешиванием с 0,1 н. раствором NaOH готовят буферные растворы с рН от 9,3 до 11,0.

Раствор 6. Готовят точно 0,1 н. раствор HCl;

Раствор 7. Готовят точно 0,1 н. раствор NaOH; дистиллированную воду для приготовления раствора кипятят 2 ч для удаления CO2. Раствор при хранении защищают от попадания CO2 из воздуха хлоркальциевой трубкой.

В некоторых растворах при хранении образуется налет плесени, для предотвращения этого к раствору прибавляют несколько капель тимола в качестве консервирующего средства. Для приготовления буферного раствора требуемого pH смешивают указанные растворы в определенном соотношении (табл. 5). Объем измеряют с помощью бюретки вместимостью 100,0 мл. Все значения pH буферных растворов в таблице приведены к температуре 20 °С.

Для приготовления исходных растворов используют реактивы квалификации хч. Гидрофосфат натрия Na2HPO4-2H2O предварительно дважды перекристаллизовывают. При второй перекристаллизации температура раствора не должна превышать 90 °С. Полученный препарат слегка увлажняют и высушивают в термостате при 36 °С в течение двух суток. Дигидрофосфат калия KH2PO4 также дважды перекристаллизовывают и высушивают при 110-120 °С. Хлорид натрия NaCl дважды перекристаллизовывают и сушат при 120 °С. Лимонную кислоту C6H8O7-H2O дважды перекристаллизовывают. При второй перекристаллизации температура раствора не должна быть выше 60 °С. Борную кислоту H3BO3 дважды перекристаллизовывают из кипящей воды и высушивают при температуре не выше 80 °С.

На значение pH оказывает влияние температура буферного раствора. В табл. 6 приведены отклонения pH в зависимости от температуры стандартных буферных растворов.

Для создания заданного pH в анализируемом растворе при комплексометрических титрованиях применяют буферные растворы следующего состава.

pH = 1. Соляная кислота, 0,1 н. раствор.

pH = 2. Смесь гликокола NH2-CH2-COOH и его солянокислой соли NH2-CH2-COOH-HCl. Твердый гликокол (0,2-0,3 г) прибавляют к 100 мл солянокислого раствора соли.

pH = 4-6,5. Ацетатная смесь 1 н. раствора ацетата натрия и 1 н. раствора уксусной кислоты. Растворы смешивают перед применением в равных объемах.

pH = 5. Смесь раствора 27,22 г кристаллического ацетата натрия и 60 мл 1 н. раствора HCl разбавляют до 1 л водой.

pH = 5,5. Ацетатная смесь. Растворяют 540 г ацетата натрия в воде и разбавляют до 1 л. К полученному раствору добавляют 500 мл 1 н. раствора уксусной кислоты.

pH = 6,5-8. Триэтаноламин и его солянокислая соль. Смешивают 1 М раствор триэтаноламина N(C2H4OH)3 и 1 М раствор HCl в равных объемах перед применением.

pH = 8,5-9,0. Аммиачно-ацетатная смесь. К 500 мл концентрированного аммиака добавляют 300 мл ледяной уксусной кислоты и разбавляют водой до 1 л.

pH = 9. Боратная смесь. Смешивают 100 мл 0,3 М раствора борной кислоты с 45 мл 0,5 н. раствора едкого натра.

pH = 8-11. Аммиак - хлорид аммония. Смешивают 1 н. раствор NH4OH и 1 н. раствор NH4Cl в равных объемах перед применением.

pH = 10. К 570 мл концентрированного раствора аммиака прибавляют 70 г хлорида аммония и разбавляют водой до 1 л.

рН = 11-13. Едкий натр, 0,1 н. раствор.

При комплексометрическом определении общей жесткости воды применяют буферные таблетки серо-бурого цвета, приготовленные совместно с индикатором (эриохром черный Т). К пробе воды (100 мл) достаточно добавить несколько капель раствора сульфида натрия (для маскировки тяжелых металлов), две буферные таблетки и 1 мл концентрированного аммиака. После растворения таблеток раствор окрашивается в красный цвет; его оттитровывают 0,02 М раствором ЭДТА до устойчивого зеленого окрашивания. 1 мл 0,02 М раствора ЭДТА соответствует 0,02 экв/л жесткости воды. Выпускаются в ГДР.

Измерение pH

Для определения pH растворов применяют специальные реактивы - индикаторы, а также приборы - pH-метры (электрометрическое определение pH).

Индикаторное определение pH. Чаще всего в аналитической практике pH растворов определяют приближенно с помощью реактивной индикаторной бумаги (в интервале 0,5-2,0 единицы pH). С помощью индикаторной универсальной бумаги можно определить pH более точно (в интервале 0,2-0,3 единицы pH). В табл. 7 и 8 приведены данные о реактивных и универсальных индикаторных бумагах.

Переход окраски универсальной индикаторной бумаги приведен в табл. 8 и 9. Полученные промежуточные цвета сопоставляют с прилагаемой шкалой сравнения и по ней находят значения pH испытуемого раствора. Индикаторные бумаги можно использовать для определения pH водных растворов с невысокой концентрацией солей и в отсутствие сильных окислителей. Определив pH с помощью универсальной индикаторной бумаги с интервалом pH = 1,0-11,0 или 0-12, уточняют полученный результат с помощью бумаги «Рифан» с более узким интервалом pH.

Электрометрическое измерение pH. Этот метод удобен для измерения pH цветных растворов, в которых практически невозможно. Для измерений используют приборы - pH-метры со стеклянным электродом, которым обычно заменяют водородный электрод. Очень редко для этой цели применяют сурьмяный или хингидронный электрод.

Стеклянные электроды применяют для определения pH растворов, содержащих тяжелые металлы, окислители и восстановители, а также коллоидных растворов и эмульсий. Определение pH со стеклянным электродом основано на изменении э.д.с. элемента, обратимого относительно ионов водорода.

Потенциал поверхности стекла, соприкасающегося с раствором кислоты, зависит от pH раствора. Это свойство стекла использовано в стеклянных электродах - индикаторах pH. Стеклянный электрод обычно имеет форму пробирки, донная часть которой выполнена в виде тонкостенной стеклянной пластинки или в виде шарика с толщиной стенок не более 0,01 мм. В стеклянный электрод наливают буферный раствор с известным pH и помещают в исследуемый раствор.

В качестве электрода сравнения используют каломельный электрод. Этот электрод представляет собой сосуд, на дне которого находится ртуть, соединенная с цепью платиновой проволокой. Над ртутью находится каломельная паста с кристаллами KCl, сверху насыщенные растворы KCl и каломели (Hg2Cl2). Контакт электрода с исследуемым раствором происходит через тонкое асбестовое волокно. Каломельный электрод сравнения можно применять для измерений pH при температуре не выше 60 °С; нельзя измерять pH растворов, содержащих фториды.

Прибор pH-метр проверяют и настраивают всегда по тому буферному раствору, pH которого близок к pH исследуемого раствора. Например, для измерения pH в области от 2 до 6 готовят буферный раствор по Зеренсену с pH = 3 или 4 или применяют стандартный буферный раствор с pH = 4,62.

В лабораторной практике для измерения pH применяют pH-метр ЛПУ-01, который предназначен для определения pH растворов в пределах от -2 до 14 с диапазоном через 4 единицы pH: -2-2; 2-4; 6-10; 10-14. Чувствительность прибора - 0,01 pH. Используют также pH-метр лабораторный специальный ЛПС-02; pH-метр типа ПЛ-У1 и переносной pH-метр-милливольтметр ППМ-03М1.

Промышленным преобразователем повышенной точности является pH-метр типа pH-261, который предназначается для измерений pH растворов и пульп. В полевых условиях для измерений pH водных растворов применяют pH-метр pH-47М; для измерений pH солевых почвенных вытяжек - pH-метр ПЛП-64; для молока и молочных продуктов применяют pH-метр pH-222-2. Работа на pH-метрах осуществляется согласно инструкции, прилагаемой к каждому прибору.

Вспомните:

Реакция нейтрализации — это реакция между кислотой и щелочью, в результате которой образуются соль и вода;

Под чистой водой химики понимают химически чистую воду, не содержащую никаких примесей и растворенных солей, т. е. дистиллированную воду.

Кислотность среды

Для различных химических, промышленных и биологических процессов очень важной характеристикой является кислотность растворов, характеризующая содержание кислот или щелочей в растворах. Поскольку кислоты и щелочи являются электролитами, то для характеристики кислотности среды используют содержание ионов H+ или OH - .

В чистой воде и в любом растворе вместе с частицами растворенных веществ присутствуют также ионы H+ и OH - . Это происходит благодаря диссоциации самой воды. И хотя мы считаем воду неэлектролитом, тем не менее она может диссоциировать: H 2 O ^ H+ + OH - . Но этот процесс происходит в очень незначительной степени: в 1 л воды на ионы распадается только 1 . 10 -7 моль молекул.

В растворах кислот в результате их диссоциации появляются дополнительные ионы H+. В таких растворах ионов H+ значительно больше, чем ионов OH - , образовавшихся при незначительной диссоциации воды, поэтому эти растворы называют кислотными (рис. 11.1, слева). Принято говорить, что в таких растворах кислотная среда. Чем больше ионов H+ содержится в растворе, тем больше кислотность среды.

В растворах щелочей в результате диссоциации, наоборот, преобладают ионы OH - , а катионы H+ ввиду незначительной диссоциации воды почти отсутствуют. Среда таких растворов щелочная (рис. 11.1, справа). Чем выше концентрация ионов OH - , тем более щелочной является среда раствора.

В растворе поваренной соли количество ионов H+ и OH - одинаково и равно 1 . 10 -7 моль в 1 л раствора. Такую среду называют нейтральной (рис. 11.1, по центру). Фактически это означает, что раствор не содержит ни кислоты, ни щелочи. Нейтральная среда характерна для растворов некоторых солей (образованных щелочью и сильной кислотой) и многих органических веществ. У чистой воды также нейтральная среда.

Водородный показатель

Если сравнивать вкус кефира и лимонного сока, то можно смело утверждать, что лимонный сок намного кислее, т. е. кислотность этих растворов разная. Вы уже знаете, что в чистой воде также содержатся ионы H+, но кислого вкуса воды не ощущается. Это объясняется слишком малой концентрацией ионов H+. Часто бывает недостаточно сказать, что среда кислотная или щелочная, а необходимо количественно ее охарактеризовать.

Кислотность среды количественно характеризуют водородным показателем pH (произносится «пэ-аш»), связанным с концентрацией

ионов Гидрогена. Значение pH соответствует определенному содержанию катионов Гидрогена в 1 л раствора. В чистой воде и в нейтральных растворах в 1 л содержится 1 . 10 7 моль ионов H+, а значение pH равно 7. В растворах кислот концентрация катионов H+ больше, чем в чистой воде, а в щелочных растворах меньше. В соответствии с этим меняется и значение водородного показателя pH: в кислотной среде он находится в пределах от 0 до 7, а в щелочных — от 7 до 14. Впервые водородный показатель предложил использовать датский химик Педер Сёренсен.

Вы могли заметить, что значение pH связано с концентрацией ионов H+. Определение pH напрямую связано с вычислением логарифма числа, которое вы будете изучать на уроках математики в 11 классе. Но взаимосвязь между содержанием ионов в растворе и значением pH можно проследить по следующей схеме:



Значение рН водных растворов большинства веществ и природных растворов находится в интервале от 1 до 13 (рис. 11.2).

Рис. 11.2. Значение рН различных природных и искусственных растворов

Сёрен Педер Лауриц Сёренсен

Датский физико-химик и биохимик, президент Датского королевского общества. Окончил Копенгагенский университет. В 31 год стал профессором Датского политехнического института. Возглавлял престижную физико-химическую лабораторию при пивоваренном заводе Карлсберга в Копенгагене, где сделал свои главные научные открытия. Основная научная деятельность посвящена теории растворов: он ввел понятие о водородном показателе (рН), изучал зависимость активности ферментов от кислотности растворов. За научные достижения Сёренсен внесен в перечень «100 выдающихся химиков XX века», но в истории науки он остался прежде всего как ученый, который ввел понятия «рН» и «рН-метрия».

Определение кислотности среды

Для определения кислотности раствора в лабораториях чаще всего используют универсальный индикатор (рис. 11.3). По его окраске можно определить не только наличие кислоты или щелочи, но и значение рН раствора с точностью до 0,5. Для более точного измерения рН существуют специальные приборы — рН-метры (рис. 11.4). Они позволяют определить рН раствора с точностью до 0,001-0,01.

Используя индикаторы или рН-метры, можно следить за тем, как протекают химические реакции. Например, если к раствору натрий гидроксида приливать хлоридную кислоту, то произойдет реакция нейтрализации:

Рис. 11.3. Универсальным индикатором определяют приблизительное значение рН

Рис. 11.4. Для измерения pH растворов используют специальные приборы — рН-метры: а — лабораторный (стационарный); б — портативный

В этом случае растворы реагентов и продуктов реакции бесцветны. Если же в исходный раствор щелочи поместить электрод рН-метра, то о полной нейтрализации щелочи кислотой можно судить по значению рН образованного раствора.

Применение водородного показателя

Определение кислотности растворов имеет большое практическое значение во многих областях науки, промышленности и других сферах жизни человека.

Экологи регулярно измеряют рН дождевой воды, воды рек и озер. Резкое повышение кислотности природных вод может быть следствием загрязнения атмосферы или попадания в водоемы отходов промышленных предприятий (рис. 11.5). Такие изменения влекут за собой гибель растений, рыбы и других обитателей водоемов.

Водородный показатель очень важен для изучения и наблюдения процессов, происходящих в живых организмах, т. к. в клетках протекают многочисленные химические реакции. В клинической диагностике определяют pH плазмы крови, мочи, желудочного сока и др. (рис. 11.6). Нормальное значение pH крови — от 7,35 до 7,45. Даже небольшое изменение pH крови человека вызывает серьезные заболевания, а при рН = 7,1 и ниже начинаются необратимые изменения, которые могут привести к смерти.

Для большинства растений важна кислотность почвы, поэтому агрономы заранее проводят анализ почв, определяя их рН (рис. 11.7). Если кислотность слишком велика для определенной культуры, почву известкуют — добавляют мел или известь.

В пищевой промышленности при помощью кислотно-основных индикаторов проводят контроль качества продуктов питания (рис. 11.8). Например, в норме для молока pH = 6,8. Отклонение от этого значения свидетельствует либо о наличии посторонних примесей, либо о его скисании.

Рис. 11.5. Влияние уровня pH воды в водоемах на жизнедеятельность растений в них

Важным является значение pH для косметических средств, которые мы используем в быту. В среднем для кожи человека pH = 5,5. Если кожа контактирует со средствами, кислотность которых существенно отличается от этого значения, то это влечет преждевременное старение кожи, ее повреждение или воспаление. Было замечено, что у прачек, которые длительное время использовали для стирки обычное хозяйственное мыло (pH = 8-10) или стиральную соду (Na 2 CO 3 , pH = 12-13), кожа рук становилась очень сухой и покрывалась трещинами. Поэтому очень важно использовать различные косметические средства (гели, кремы, шампуни и т. д.) с pH, близким к естественному pH кожи.

ЛАБОРАТОРНЫЕ ОПЫТЫ № 1-3

Оборудование: штатив с пробирками, пипетка.

Реактивы: вода, хлоридная кислота, растворы NaCl, NaOH, столовый уксус, универсальный индикатор (раствор или индикаторная бумага), пищевые продукты и косметическая продукция (например, лимон, шампунь, зубная паста, стиральный порошок, газированные напитки, соки и т. д.).

Правила безопасности:

Для опытов используйте небольшие количества реактивов;

Остерегайтесь попадания реактивов на кожу, в глаза; при попадании едкого вещества смойте его большим количеством воды.

Определение ионов Гидрогена и гидроксид-ионов в растворах. Установление приблизительного значения pH воды, щелочных и кислых растворов

1. В пять пробирок налейте по 1-2 мл: в пробирку № 1 — воды, № 2 — хлоридной кислоты, № 3 — раствора натрий хлорида, № 4 — раствора натрий гидроксида и № 5 — столового уксуса.

2. В каждую пробирку добавьте по 2-3 капли раствора универсального индикатора или опустите индикаторную бумагу. Определите pH растворов, сравнивая цвет индикатора по эталонной шкале. Сделайте выводы о наличии в каждой пробирке катионов Гидрогена или гидроксид-ионов. Составьте уравнения диссоциации этих соединений.

Исследование pH пищевой и косметической продукции

Испытайте универсальным индикатором образцы пищевых продуктов и косметической продукции. Для исследования сухих веществ, например, стирального порошка, их необходимо растворить в небольшом количестве воды (1 шпатель сухого вещества на 0,5-1 мл воды). Определите pH растворов. Сделайте выводы о кислотности среды в каждом из исследованных продуктов.


Ключевая идея

Контрольные вопросы

130. Наличием каких ионов в растворе обусловлена его кислотность?

131. Какие ионы содержатся в избытке в кислотных растворах? в щелочных?

132. Какой показатель количественно описывает кислотность растворов?

133. Каково значение рН и содержание ионов H+ в растворах: а) нейтральных; б) слабокислотных; в) слабощелочных; г) сильнокислотных; д) сильнощелочных?

Задания для усвоения материала

134. Водный раствор некоторого вещества имеет щелочную среду. Каких ионов больше в этом растворе: H+ или OH - ?

135. В двух пробирках находятся растворы нитратной кислоты и нитрата калия. Какие индикаторы можно использовать для определения, в какой пробирке содержится раствор соли?

136. В трех пробирках находятся растворы барий гидроксида, нитратной кислоты и кальций нитрата. Как с помощью одного реактива распознать эти растворы?

137. Из приведенного перечня выпишите отдельно формулы веществ, растворы которых имеют среду: а) кислотную; б) щелочную; в) нейтральную. NaCl, HCl, NaOH, HNO 3 , H 3 PO 4 , H 2 SO 4 , Ba(OH) 2 , H 2 S, KNO 3 .

138. Дождевая вода имеет рН = 5,6. Что это означает? Какое вещество, содержащееся в воздухе, при растворении в воде определяет такую кислотность среды?

139. Какая среда (кислотная или щелочная): а) в растворе шампуня (рН = 5,5);

б) в крови здорового человека (рН = 7,4); в) в желудочном соке человека (рН = 1,5); г) в слюне (рН = 7,0)?

140. В составе каменного угля, используемого на теплоэлектростанциях, содержатся соединения Нитрогена и Сульфура. Выброс в атмосферу продуктов сжигания угля приводит к образованию так называемых кислотных дождей, содержащих небольшие количества нитратной или сульфитной кислот. Какие значения рН характерны для такой дождевой воды: больше 7 или меньше 7?

141. Зависит ли рН раствора сильной кислоты от ее концентрации? Ответ обоснуйте.

142. К раствору, содержащему 1 моль калий гидроксида, прилили раствор фенолфталеина. Изменится ли окраска этого раствора, если к нему добавить хлоридную кислоту количеством вещества: а) 0,5 моль; б) 1 моль;

в) 1,5 моль?

143. В трех пробирках без надписей находятся бесцветные растворы натрий сульфата, натрий гидроксида и сульфатной кислоты. Для всех растворов измерили значение рН: в первой пробирке — 2,3, во второй — 12,6, в третьей — 6,9. В какой пробирке содержится какое вещество?

144. Ученик купил в аптеке дистиллированную воду. рН-метр показал, что значение рН этой воды равно 6,0. Затем ученик прокипятил эту воду в течение длительного времени, заполнил контейнер до верха горячей водой и закрыл крышкой. Когда вода остыла до комнатной температуры, рН-метр определил значение 7,0. После этого ученик трубочкой пропускал воздух через воду, и рН-метр снова показал 6,0. Как можно объяснить результаты этих измерений рН?

145. Как вы считаете, почему в двух бутылках уксуса от одного производителя могут содержаться растворы с несколько различными значениями рН?

Это материал учебника

Водородный показатель (pH-фактор) - это мера активности ионов водорода в растворе, количественно выражающая его кислотность . Когда pH не на оптимальном уровне, растения начинают терять способность поглощать некоторые из необходимых для здорового роста элементы. Для всех растений есть специфический уровень pH который позволяет достичь максимальных результатов при выращивании. Большинство растений предпочитают слабокислую среду роста (между 5.5-6.5).

Водородный показатель в формулах

В очень разбавленных растворах водородный показатель эквивалентен концентрации ионов водорода. Равен по модулю и противоположен по знаку десятичному логарифму активности водородных ионов, выраженной в молях на один литр:

pH = -lg

При стандартних условиях значение pH лежит в приделах от 0 до 14. В чистой воде, при нейтральном pH, концентрация H + равна концентрации OH - и составляет 1·10 -7 моль на литр. Максимально возможное значение pH определяется как сумма pH и pOH и равна 14.

Вопреки распространённому мнению, pH может изменяться не только в интервале от 0 до 14, а может и выходить за эти пределы. Например, при концентрации ионов водорода = 10 −15 моль/л, pH = 15, при концентрации ионов гидроксида 10 моль/л pOH = −1.

Важно понимать! Шкала pH логарифмическая, что означает, что каждая единица изменения равняется десятикратному изменению концентрации ионов водорода. Другими словами, раствор с pH 6 в десять раз более кислый, чем раствор с pH 7, и раствор с pH 5 будет в десять раз более кислый, чем раствор с pH 6 и в сто раз более кислый, чем раствор с pH 7. Это означает, что когда вы регулируете pH вашего питательного раствора, и вам необходимо изменить pH на два пункта (например с 7.5 до 5.5) вы должны использовать в десять раз больше корректора pH, чем если бы изменяли pH только на один пункт (с 7.5 до 6.5).

Методы определения значения pH

Для определения значения pH растворов широко используют несколько методик. Водородный показатель можно приблизительно оценивать с помощью индикаторов, точно измерять pH-метром или определять аналитически путём, проведением кислотно-основного титрования.

Кислотно-основные индикаторы

Для грубой оценки концентрации водородных ионов широко используются кислотно-основные индикаторы - органические вещества-красители, цвет которых зависит от pH среды. К наиболее известным индикаторам принадлежат лакмус, фенолфталеин, метиловый оранжевый (метилоранж) и другие. Индикаторы способны существовать в двух по-разному окрашенных формах - либо в кислотной, либо в основной. Изменение цвета каждого индикатора происходит в своём интервале кислотности, обычно составляющем 1-2 единицы.

Универсальный индикатор

Для расширения рабочего интервала измерения pH используют так называемый универсальный индикатор, представляющий собой смесь из нескольких индикаторов. Универсальный индикатор последовательно меняет цвет с красного через жёлтый, зелёный, синий до фиолетового при переходе из кислотной области в основную.

Растворами таких смесей - «универсальных индикаторов» обычно пропитывают полоски «индикаторной бумаги», с помощью которых можно быстро (с точностью до единиц рН, или даже десятых долей рН) определить кислотность исследуемых водных растворов. Для более точного определения полученный при нанесении капли раствора цвет индикаторной бумаги немедленно сравнивают с эталонной цветовой шкалой, вид которой представлен на изображениях.

Определения pH индикаторным методом затруднено для мутных или окрашенных растворов.

Учитывая тот факт, что оптимальные значения pH для питательных растворов в гидропонике имеют весьма узкий интервал (обычно от 5.5 до 6.5) использую и другие комбинации индикаторов. Так, например, наш имеет рабочий диапазон и шкалу от 4.0 до 8.0, что делает такой тест более точным в сравнении с универсальной индикаторной бумагой.

pH-метр

Использование специального прибора - pH-метра - позволяет измерять pH в более широком диапазоне и более точно (до 0,01 единицы pH), чем с помощью универсальных индикаторов. Способ отличается удобством и высокой точностью, особенно после калибровки индикаторного электрода в избранном диапазоне рН. Позволяет измерять pH непрозрачных и цветных растворов и потому широко используется.

Аналитический объёмный метод

Аналитический объёмный метод - кислотно-основное титрование - также даёт точные результаты определения кислотности растворов. Раствор известной концентрации (титрант) по каплям добавляется к исследуемому раствору. При их смешивании протекает химическая реакция. Точка эквивалентности - момент, когда титранта точно хватает, чтобы полностью завершить реакцию, - фиксируется с помощью индикатора. Далее, зная концентрацию и объём добавленного раствора титранта, вычисляется кислотность раствора.

Влияние температуры на значения pH

Значение pH может меняться в широком диапазоне при изменение температуры. Так, 0,001 молярный раствор NaOH при 20°C имеет pH=11,73, а при 30°C pH=10,83. Влияние температуры на значения pH объясняется различной диссоциацией ионов водорода (H +) и не является ошибкой эксперимента. Температурный эффект невозможно компенсировать за счет электроники pH-метра.

Регулирование pH питательного раствора

Подкисление питательного раствора

Питательный раствор обычно приходится подкислять. Поглощение ионов растениями вызывает постепенное подщелачивание раствора. Любой раствор, имеющий pH 7 или выше, чаще всего приходится доводить до оптимального pH. Для подкисления питательного раствора можно использовать различные кислоты. Чаще всего применяют серную или фосфорную кислоты. Более верным решением для гидропонных растворов являются буферные добавки, такие как и . Данные средства не только доводят значения pH до оптимального, но и стабилизируют значения на длительный период.

При регулировании pH как кислотами, так и щелочами нужно надевать резиновые перчатки, чтобы не вызвать ожогов кожи. Опытный химик умело обращается с концентрированной серной кислотой, он по каплям добавляет кислоту к воде. Но начинающим гидропонистам, пожалуй, лучше обратиться к опытному химику и попросить его приготовить 25%-ный раствор серной кислоты. Во время добавления кислоты раствор перемешивают и определяют его pH. Узнав примерное количество серной кислоты, в дальнейшем ее можно добавлять из мерного цилиндра.

Серную кислоту нужно прибавлять небольшими порциями, чтобы не слишком сильно подкислить раствор, который тогда придется опять подщелачивать. У неопытного работника подкисление и подщелачивание могут продолжаться до бесконечности. Помимо напрасной траты времени и реактивов, такое регулирование выводит из равновесия питательный раствор вследствие накопления ненужных растениям ионов.

Подщелачивание питательного раствора

Слишком кислые растворы подщелачивают едким натрием (гидроксид натрия). Как следует из его названия - это едкое вещество, поэтому нужно пользоваться резиновыми перчатками. Рекомендуется приобретать едкий натрий в виде пилюль. В магазинах бытовой химии едкий натрий можно приобрести как средство для очистки труб, например "Крот". Растворяют одну пилюлю в 0,5 л воды и постепенно приливают щелочной раствор к питательному раствору при постоянном помешивании, часто проверяя его pH. Никакими математическими расчетами не удается вычислить, сколько кислоты или щелочи нужно добавить в том или ином случае.

Если в одном поддоне хотят выращивать несколько культур, нужно подбирать их так, чтобы совпадал не только их оптимальный pH, но и потребности в других факторах роста. Например, желтым нарциссам и хризантемам нужен pH 6,8, но различный режим влажности, поэтому их невозможно выращивать на одном и том же поддоне. Если давать нарциссам столько же влаги, сколько хризантемам , луковицы нарциссов загниют. В опытах ревень достигал максимального развития при pH 6,5, но мог расти даже при pH 3,5. Овес, предпочитающий pH около 6, дает хорошие урожаи и при pH 4, если сильно увеличить дозу азота в питательном растворе. Картофель растет при довольно широком интервале pH, но лучше всего он развивается при pH 5,5. Ниже этого pH также получают высокие урожаи клубней, но они приобретают кислый вкус. Чтобы получать максимальные урожаи высокого качества, нужно точно регулировать pH питательных растворов.