Как получил премию самый молодой лауреат в истории, теоретическими изысканиями дополнив эксперименты своего отца, выжить в Первой мировой войне и реформировать одну из самых авторитетных лабораторий мира, рассказывает сайт в своей традиционной рубрике.

Нобелевская премия по физике 1915 года (совместно с отцом, ). Формулировка Нобелевского комитета: «За заслуги в исследовании структуры кристаллов с помощью рентгеновских лучей (For their services in the analysis of crystal structure by means of X-rays)».

Обычно, когда мы пишем о нобелевском лауреате, мы начинаем рассказ с его родителей. Но об отце нашего нынешнего героя мы написали целую статью. Как вы помните, в 1915 году в истории нобелевских премий произошло уникальное событие: награду присудили отцу и сыну, Уильяму Брэггу и Уильяму Брэггу. Точнее, Уильяму Генри Брэггу и Уильяму Лоренсу Брэггу. Сейчас речь пойдет о втором из них.

Отец и сын родились в разных странах. Точнее, тогда еще в одной – Британской империи. Но если Брэгг-отец родился в старой доброй Англии, то сын его родился уже в городе Аделаида, в Южной Австралии, где его родитель преподавал в местном университете и где он встретил свою будущую жену, Гвендолайн Тодд, дочку министра почт Южной Австралии.

С загадочными Х-лучами, принесшими Уильямам Нобелевскую премию, Брэгг-младший познакомился в возрасте всего пяти лет, через несколько недель после того, как их открыл будущий первый нобелиат по физике, Вильгельм Рентген. Отец мальчика тогда преподавал физику, еще не занимался собственными исследованиями, но следил за новинками в науке. Поэтому сразу же после открытия Рентгена он добыл себе рентгеновскую установку. Одновременно пятилетний Уильям Лоренс упал с велосипеда и сломал руку. Отец сделал рентгеновский снимок для того, чтобы посмотреть характер перелома. Так состоялось первое научное достижение отца и сына: впервые в Австралии рентген был применен в медицинских целях.

Впрочем, надо сказать, что молодой Уильям с самых ранних лет интересовался наукой и был очень талантливым учеником. Уже в 14 лет он поступил в университет Аделаиды и даже успел его окончить до того, как отец получил хорошую должность в Университете Лидса. В 1908 году юноша вместе с семьей переехал в Англию и поступил в престижнейший Тринити-колледж при Кембриджском университете.

Большой двор Тринити-колледжа

Andrew Dunn/Wikimedia Commons

В 1912 году он окончил Кембридж и сдал с отличием экзамены. Задумайтесь: физик получил Нобелевскую премию через три года после окончания университета! Вряд ли этот рекорд будет когда-то и кем-то побит.

Именно тогда юноша начал собственную исследовательскую работу под руководством нобелевского лауреата , у которого учился еще его отец. Интересно, что Томсон, воспитавший много нобелевских лауреатов, выучил не только Брэгга-отца и Брэгга-сына. Даже его собственный сын, Джордж Пэйджет Томсон, учившийся у отца, стал нобелевским лауреатом почти за то же, что и Брэгги – за дифракцию на кристаллах. Только не рентгеновских лучей, а электронов. Одно слово – школа!

В том же 1912 году, едва выпустившись из Кембриджа, Уильям Лоренс вместе с отцом начал обсуждать открытие : рентгеновские волны после прохождения кристаллов образуют дифракционную картину. Это открытие разрушило теорию отца, который считал рентген потоком частиц: дифракцию могут давать только волны.

Посвященная Максу фон Лауэ почтовая марка, на которой изображено и его открытие

Deutsche Post der DDR/Wikimedia Commons

Отец и сын стали исследовать проблему и дальше: старший - с экспериментальной точки зрения, сын уселся за уравнения. Уильям Лоуренс пришел к убеждению, что волновая интерпретация рентгеновского излучения Лауэ верна, но, в то же время, описание деталей дифракции нобелевский лауреат 1914 года уж чересчур усложнил. Уже в 1913 году юноша публикует уравнение, которое ныне называется законом Брэгга и легло в основу всего рентгеноструктурного анализа. Его формула подсказывает угол, под которым нужно направить рентгеновские лучи на кристалл, чтобы определить его структуру по дифракционной картине.

2dsinθ=nλ

Где d - межплоскостное расстояние, θ - угол скольжения (брэгговский угол), n - порядок дифракционного максимума, λ - длина волны.

Ровно через сорок лет по этой формуле сотрудники Брэгга Уотсон и Крик определят структуру двойной спирали ДНК.

Но пока что отец с сыном начали изучать кристаллы поваренной соли – и с удивлением для себя и для всей мировой науки обнаружили, что молекул поваренной соли не существует, а кристаллы состоят из ионов натрия и хлора.

В 1915 году в семье Брэггов практически одновременно случился двойной праздник и огромное горе. Отец и старший сын стали нобелевскими лауреатами по физике (впрочем, премию им вручат только в 1919 году), а вот младший сын, Роберт, погиб на фронтах Первой мировой.

Впрочем, воевал и Уильям Лоренс: он занимался акустической разведкой, вычисляя расположение вражеских батарей по звуку канонады, и, естественно, тоже постоянно находился в опасности.

Свою Нобелевскую лекцию Брэгг-младший прочитал только в 1922 году. В ней он подвел итог своей короткой пока еще научной биографии. Нужно сказать, что Уильям Лоренс Брэгг стал человеком, который прожил, кажется, самую долгую жизнь после Нобелевки. 55 лет, более полувека он жил, неся груз и славу самого молодого лауреата.

Нужно сказать, что ученый проявил себя талантливым организатором науки. После Второй мировой он вернулся в , в которой начинал работу еще у Томсона, и занялся ее реформированием. Он считал, что идеальной научной группой станет коллектив до дюжины ученых и нескольких ассистентов.

Еще одно исследование, поддержанное Брэггом – расшифровка структуры гемогломбина Максом Перутцем - тоже принесло Кавендишской лаборатории «Нобеля». Поддержал Брэгг и труды отца на ниве популяризации науки – с 1953 до выхода на пенсию в 1966 году, будучи профессором Королевского института в Лондоне, он проводил лекции с экспериментами по физике для школьников. К концу работы Брэгга-младшего на этом поприще на лекции приходили примерно двадцать тысяч ребят ежегодно.

Так что в нашем случае сын оказался достоин отца – прожил такую же длинную, важную и насыщенную в каждый момент жизнь. Лишь в одном он оказался «круче» – в 1941 году Уильям Брэгг-младший стал рыцарем. Но старый отец, которому исполнилось 79 лет, не завидовал, а радовался достижению своего сына как ребенок.

ДОСАДНЫЙ ПЕРЕКОС

Нобелевская премия 2006 г. по химии

Незачем скорбеть о досаждающих нам переменах,
ибо перемены – основа жизни.

Анатоль Франс

И з уст маститых ученых часто можно слышать, что деление химии на органическую, неорганическую, полимерную, аналитическую условно. Химия едина! Например, академик Ю.А.Золотов напоминает, что границы между смежными науками никогда не были четкими, потому что природа вообще не знает придуманного нами деления на дисциплины.

Это, безусловно, верно, но возникло деление химии на различные дисциплины не случайно, и отказаться от него довольно трудно. Химику-органику совсем не просто читать монографию по геохимии или вникать в статью по химии металлических сплавов: совсем иной образ мыслей, другой язык, малознакомые экспериментальные методики и способы представления результатов. Специализация химика в определенном направлении совсем не мешает работе, скорее наоборот, помогает совершенствоваться.

Обсуждать это вряд ли имело бы смысл, если бы не одна грустная деталь. Альфред Нобель в своем завещании упомянул химию, никак не разделяя ее на отдельные дисциплины. К чему это привело, судите сами: за последние 10 лет семь раз эту престижную премию получали биохимики и только три раза те, кого можно назвать «обычными» химиками, в том числе и физикохимики.

Традиционно Нобелевскую премию считают индикатором высоких достижений, она отмечает заметные вехи в развитии науки, дает возможность каждому ученому скорректировать свои знания и эрудицию. В крупных научных центрах принято приглашать очередного лауреата выступить с лекцией, некоторые институты устраивают специальный семинар для знакомства с содержанием премированной работы. Но в последние годы эта традиция почти исчезла.

Все дело в том, что биохимия (ее более современное название – молекулярная биология) весьма специфична. Не только круг изучаемых ею объектов, но и сам язык этой науки заметно отличается от того, к которому привыкли остальные химики. Традиционный язык химии – прежде всего химические формулы, благодаря которым химики всего мира легко понимают друг друга. Но именно химических формул в работах по биохимии вы практически не увидите.

Обычно состав молекулы полипептида изображают в виде слагающих эту молекулу аминокислот, обозначенных буквенными сочетаниями (например, ЛЕЙ-АЛА-ФЕН-ГЛИ-АЛА-АЛА), но скорее всего вам придется разглядывать ленточки, полоски, жгутики и спирали. Такой способ, помогающий изобразить третичную структуру биополимеров, предложил в свое время американский биофизик Джейн Ричардсон. Это компактный и, безусловно, удобный (для биохимиков) способ записи, но весьма непривычный для большинства химиков. Поэтому при знакомстве с очередным достижением химии, отмеченным престижной премией, большинство химиков ограничивается чтением всего одного предложения из пресс-релиза Нобелевского комитета, в котором сказано, за что именно присуждена эта премия (и не более того).

Понятно, что в сложившейся ситуации никак не виноваты сами биохимики, они делают свое трудное и интересное дело, не помышляя ни о каких премиях. «Обычные» химики тоже не виноваты. яркие звезды, загорающиеся на небосклоне химии (ферроцен, карборан, фуллерен) и создающие новые главы химической науки, появляются, к сожалению, не каждое десятилетие и, увы, непредсказуемо, что, кстати, делает научный поиск интереснее. Не только новые необычные соединения заслуживают награды. Если спросить самих химиков, то они назовут массу вполне достойных исследований: антикраун-эфиры, ионные жидкости, процессы кросс-сочетания и многое другое.

Нобелевский комитет тоже не в чем упрекнуть: они – обычные люди и никак не виноваты в том, что гораздо большее впечатление на них производят те работы, которые открывают способы лечения многих болезней, таких как болезнь Паркинсона, болезнь Альцгеймера, некоторые онкологические заболевания.

Преимущественное внимание членов Нобелевского комитета к биохимическим работам усиливается дополнительно следующим обстоятельством: все лауреаты Нобелевских премий прежних лет имеют право номинировать кандидатов на эту премию (т.е. выдвигать кандидатуры для очередного рассмотрения). Поскольку среди них с каждым годом все больше биохимиков, то вполне естественно, что они предлагают к номинированию тех ученых, работы которых им хорошо знакомы и достоинства которых им хорошо известны.

Можно предположить, что подобная проблема зреет и в недрах соседней с химией дисциплины: физики тоже, скорее всего, готовы посетовать на то, что астрофизика с ее нейтринной астрономией, рентгеновскими телескопами и исследованиями космического излучения постепенно захватывает монополию на премии.

Впрочем, есть выход – ввести новые номинации, как это было сделано в 1969 г., когда начали присуждать Нобелевские премии по экономике, но это, к сожалению, не нам решать.

Отложим на время наши переживания, связанные с тем, что обычная химия оказалась в тени набирающей силу биохимии, и познакомимся поближе с премированной работой.

И так, Нобелевская премия по химии в 2006 г. присуждена Роджеру Корнбергу (Roger Kornberg) за исследования механизма транскрипции на молекулярном уровне у эукариотов. В названии работы присутствуют термины, которые следует пояснить.

Эукариоты – различные одно- или многоклеточные растительные и животные организмы, у которых в теле клеток содержится отграниченное мембраной ядро. В ядре, как известно, находится индивидуальный хромосомный набор каждого организма.

Помимо эукариотов существуют еще прокариоты, их организмы не содержат клеточного ядра и хромосомного аппарата – это бактерии, сине-зеленые водоросли и некоторые другие организмы. Таким образом, к эукариотам, которых изучал автор премированной работы, относится большинство окружающих нас растительных и животных организмов, в том числе и мы с вами, уважаемые читатели.

Вначале напомним, для чего используется информация, записанная в молекулах ДНК с помощью чередующихся азотсодержащих гетероциклов (нуклеиновых оснований). Конечный этап извлечения этой информации – синтез белков. Белки – важнейшие компоненты каждого живого организма: мышцы, внутренние органы, костная ткань, кожный и волосяной покров млекопитающих состоят из белков. Это полимерные соединения, которые собираются в живом организме из различных аминокислот. В такой сборке управляющую роль играют нуклеиновые кислоты, процесс проходит в две стадии.

На первой стадии часть двойной спирали ДНК раскрывается, освободившиеся ветви расходятся и становятся доступными. На этом участке начинается синтез РНК, называемой матричной, поскольку она, как копия с матрицы, точно воспроизводит информацию, записанную на раскрывшемся участке ДНК.

На второй стадии матричная РНК перемещается из ядра клетки в околоядерное пространство – цитоплазму, и к ней подходят так называемые транспортные РНК, которые несут с собой (транспортируют) различные аминокислоты для сборки белковых молекул. Какие именно аминокислоты и в какой очередности должны выстраиваться в цепь, указывает порядок чередования азотсодержащих гетероциклов в матричной РНК. Весь процесс напоминает работу пишущей машинки, складывающей из букв алфавита осмысленные слова.

Упомянутая выше первая стадия этого механизма и оказалась в центре внимания Корнберга.

Термин «транскрипция», присутствующий в названии работы, означает перезапись информации с ДНК на РНК. Этот процесс исключительно важен: если он остановится, то организм погибнет. Известно, например, что транскрипцию блокирует токсин, содержащийся в бледных поганках, многие заболевания (онкологические и сердечно-сосудистые) также связаны с нарушением этого процесса.

Большинство биохимических процессов проходит в присутствии биокатализаторов (так называемых ферментов). На сегодня изучено свыше 2000 различных ферментов, это самый многочисленный класс белков. Традиционно название каждого фермента имеет окончание «аза». Ферменты – истинные короли в мире катализа: они способны увеличивать скорости биохимических процессов в тысячи раз. Ферменты не только высокоэффективные катализаторы, но и селективные (направляют реакцию в строго заданном направлении). В их присутствии реакция проходит практически со 100%-м выходом, без образования побочных продуктов, при этом условия протекания реакции исключительно мягкие: обычное атмосферное давление и температура живого организма.

Процесс транскрипции, о котором идет речь, также проходит в присутствии специального катализатора – РНК-полимеразы. Эта макромолекула состоит из 30 000 атомов (название довольно точно отражает назначение этого катализатора). Механизм действия РНК-полимеразы и составляет основное содержание премированной работы.

Молекула полимеразы представляет собой спутанный клубок, который охватывает ДНК, удерживая ее в нужном положении. Затем фермент узнает, какой именно участок ДНК следует раскрыть, и частично раскрывает две нити ДНК с образованием небольшой полости. Открывшаяся полость имеет строго определенный размер: точно такой, который позволяет новому звену войти внутрь полости и присоединиться к растущей молекуле РНК. Природа этого звена определяется составом нуклеотида в открывшемся участке ДНК. После того как нужное звено встало на место, специальный фрагмент полимеразы (показан на рис. 1 в виде черной спирали) передвигает ДНК для того, чтобы произошло считывание следующего участка.

В зависимости от того, какое именно звено должно оказаться следующим, перемещающий спиральный фрагмент, подобно челноку, сдвигает ДНК назад или вперед для того, чтобы можно было раскрыть новый участок ДНК. Со слов Корнберга, он получил большое удовольствие, когда сумел в деталях познакомиться с замечательной работой этого «механизма».

После того как растущая РНК достигает нужной длины, она отходит в сторону, и ДНК восстанавливает структуру двойной спирали. В конце всех процедур молекула ДНК должна остаться неизменной. Природа это заботливо предусмотрела.

Заслуга Корнберга состоит в том, что он сумел сделать буквально «покадровую съемку» этого процесса, но не в форме фотоснимков, а в виде расшифрованных результатов рентгеноструктурного анализа, дополненных электронной микроскопией. Полученные результаты он представил в наглядной форме с помощью компьютерной модели. Столь элегантный эксперимент ему удалось провести благодаря тому, что он сумел выбрать необычайно удобный объект исследования – клетки пищевых дрожжей.

Дрожжи тоже относятся к эукариотам, и потому их можно рассматривать (в плане изучения механизма транскрипции) как модель млекопитающих. Оказалось, что дрожжевыми клетками намного легче манипулировать и проще создавать однородный материал, обеспечивающий воспроизводимость экспериментов. Тем не менее, чтобы полностью отработать технику эксперимента, Корнбергу потребовалось более десяти лет. В течение всего этого времени у него не было даже промежуточных результатов, которые можно было бы опубликовать, первые снимки он опубликовал в 2001 г.

Не многие исследователи могли бы столь долго продолжать поиски, не получая конкретных результатов. В течение всего периода работу финансировал Национальный институт здравоохранения США. По мнению Корнберга, рассчитывать на финансирование подобных фундаментальных работ со стороны промышленных или коммерческих организаций не приходится, поскольку только через десятилетия можно ожидать реальную прибыль.

Результаты работы Корнберга не исчерпываются описанной «съемкой» процесса. Помимо этого он установил, что процессу транскрипции «помогает» дополнительное участие пяти особых молекулярных комплексов. Например, комплекс из двадцати белков, названный медиатором (рис. 2), определяет то место, с которого следует начинать считывание информации, и когда следует закончить процесс, что напоминает работу двухпозиционного переключателя. Действие медиатора помогло понять, почему в клетках разных тканей синтезируются различные белки.

В настоящее время Корнберг изучает процессы, приводящие к нарушению транскрипции, что сопровождается различными заболеваниями. По мнению Корнберга, эти исследования со временем могут привести к созданию соответствующих лекарственных препаратов.

Н апоследок не откажем себе в удовольствии посмотреть, кому и за что присудили в 2006 г. Нобелевскую премию по физиологии и медицине: лауреаты – Эндрю Файер и Крейг Мелло, содержание работы – «За открытие РНК-интерференции – эффекта гашения активности определенных генов». Буквально та же самая область и тот же круг объектов, что и у премированной работы по химии. М.В.Ломоносов мог бы в такой ситуации перефразировать свое знаменитое изречение, сказав: «Широко простирает биохимия руки свои в дела человеческие». Впрочем, «обычные» химики не унывают, поскольку уверены в том, что химия себя еще покажет!

КОРНБЕРГ Роджер родился в 1947 г. в Сан-Луисе (штат Монтана, США) в семье биохимика Артура Корнберга. Роджер – старший из трех сыновей. Его младший брат Томас Корнберг – профессор биохимии в Сан-Франциско (штат Калифорния, США) – вспоминает, что Роджера никогда ничто не интересовало, кроме науки, обстановка в их доме была такова, что беседы о науке продолжались в течение всего дня, в том числе и за обедом, и даже во время уик-эндов.

Роджер Корнберг получил степень бакалавра в 1967 г. в Гарварде, а степень доктора – в 1972 г. в Стэнфорде за исследование перемещения липидов в мембранах клеток. С 1972 г. по 1975 г. он работал в лаборатории молекулярной биологии в Кембридже (Великобритания), а с 1976 г. – в Военно-медицинской школе Гарварда в должности доцента по биохимии. В 1978 г. Корнберг возвратился в Стэнфорд и начал работу в звании профессора на кафедре структурной биологии.

Корнберг – член американской Национальной академии наук и американской академии наук и искусств, почетный член японского Биохимического общества, редактор журнала «Annual Reviews of Biochemistry» , обладатель четырех национальных премий и Гран-при французской академии наук (2002). В связи с получением Нобелевской премии Корнберг был вынужден отменить поездку в Питсбург, где его ожидала премия Диксона по медицине.

В настоящее время он работает в Стэнфордском университете (штат Калифорния, США). Его жена Яли Лорч (Yahli Lorch) долгое время работала вместе с ним в Стэнфордском университете и, по словам Корнберга, была постоянным источником вдохновения в работе. В настоящее время она занимает должность профессора в этом университете.

Одним из первых поздравил нового лауреата его отец Артур Корнберг, который в 1959 г. получил Нобелевскую премию по физиологии и медицине за исследование механизмов биосинтеза рибонуклеиновой кислоты и дезоксирибонуклеиновой кислоты. Двенадцатилетний Роджер присутствовал в Стокгольме вместе с отцом на церемонии вручения премии.

Подобный прецедент – лауреаты отец и сын – шестой случай в истории Нобелевских премий. Для отца столь высокое признание заслуг сына не стало неожиданным, т. к. он знал, что его сын в прошлые годы был номинирован на эту премию.

В завершение своей нобелевской лекции Корнберг показал на экране список, включающий имена более чем 70 коллег из Америки, Европы и Израиля, сотрудничавших с ним в процессе работы. По мнению Корнберга, основные ожидания в борьбе за здоровье человечества следует связывать с биохимическими исследованиями.

Cramer P., Bushnell D.A., Kornberg R.D. Structural basis of transcription: RNA polymerase II at 2.8 Е resolution. Science, 2001, v. 292, р. 1863–1876.

Gnatt A.L., Cramer P., Fu J., Bushnell D.A., Kornberg R.D. Structural basis of transcription: An RNA polymerase II elongation complex at 3.3 Е resolution. Science, 2001, v. 292, p. 1876–1882.

Bushnell D.A., Westover K.D., Davis R.E., Kornberg R.D . Structural basis of transcription: An RNA polymerase II – TFIIB cocrystal at 4.5 angstroms. Science, 2004, v. 303, p. 983–988.

Интересные факты из истории присуждения Нобелевских премий

27 ноября 1895 года в Париже в присутствии четырех свидетелей шведский промышленник, изобретатель динамита, бездымного пороха, газовых моторов, искусственного шелка и многого другого Альфред Бернхард Нобель подписал завещание, согласно которому его доверенное лицо Рагнар Сульман, сын которого впоследствии был долгие годы послом Швеции в СССР, должен перевести все его состояние, включая действующие предприятия, в надежные ценные бумаги, которые в совокупности должны составить основной постоянный фонд.

Премия самым достойным

Доходы от фонда в виде процентов должны ежегодно идти на пять равноценных премий лицам, которые «принесли наибольшую помощь человечеству». Одна – тому, кто сделает наиболее важное открытие или изобретение в области физики; другая – за наиболее существенное открытие или усовершенствование в области химии; третья – за важнейшее изобретение или достижение в области физиологии или медицины; четвертая – за наиболее выдающееся гуманистическое произведение в области литературы; пятая – «за выдающиеся усилия в деле борьбы за братство народов, упразднение или сокращение постоянных армий, а также за создание и упрочение мирных конгрессов, ведущих к осуществлению мира и сближению народов».

«Мое особое желание, — писал Нобель, — чтобы при присуждении премий не принималась во внимание национальность кандидатов, какова бы она ни была, и чтобы премию получил наиболее достойный, будь он скандинав или нет».

Первое присуждение премий, которые стали называться Нобелевскими в честь их основателя, состоялось 10 декабря 1901 года. На сегодняшний день Нобелевская премия является, пожалуй, одной из самых почетных, престижных международных наград в современном мире. Стать ее обладателем – мечта каждого ученого, писателя, общественного деятеля. Иногда это происходит на склоне лет соискателя. Так, например, советский академик П.Л. Капица был удостоен Нобелевской премии в 84 года, а немецкий физиолог Карл фон Фриш и российский физик-теоретик В.Л. Гинзбург получили эту высокую награду в 87 лет.

Однако известен случай, когда Нобелевская премия была присуждена молодому ученому в возрасте 25 лет. Произошло это в 1915 году.

Уильям Лоренс Брэгг родился в 1890 году в г. Аделаида, в Австралии. (Кстати, здесь же, на зеленом континенте, родился один из основоположников квантовой электроники и будущий лауреат Нобелевской премии по физике советский академик А.М. Прохоров, родителей которого в свое время сюда забросила судьба). Его отец Уильям Генри Брэгг был профессором математики и физики в местном университете, куда после окончания колледжа Св. Петра и поступил 14-летний Лоренс. Окончил университет в 1908 году. В том же году его отец принял предложение о работе в Лидском университете и перевез семью в Англию.

Осенью 1909 года Лоренс поступает в колледж Тринити в Кембридже. Будучи очень способным студентом, он получает стипендию для изучения математики, однако его больше привлекает физика, изучению которой он и посвящает себя в оставшееся время до окончания колледжа в 1911 году.

В течение первого года в качестве студента-исследователя в Кембридже Лоренс делает открытие, принесшее ему наибольшую известность. Его закон о дифракции рентгеновских лучей на кристаллах позволяет рассчитать положение атомов в кристалле по дифракционной картине, которую образуют рентгеновские лучи, проходя сквозь кристаллическую решетку. Разработанный Брэггом старшим рентгеновский спектрометр позволил проанализировать большое количество кристаллов. «За заслуги в исследовании кристаллов с помощью рентгеновских лучей», отмечается в решении Нобелевского комитета, Нобелевская премия по физике за 1915 год присуждена английским ученым отцу и сыну Брэггам.

Первые семьи Нобелевских лауреатов

Но это была не первая семья Нобелевских лауреатов. В 1903 году французские ученые супруги Пьер Кюри и Мария Склодовская-Кюри были удостоены Нобелевской премии по физике за открытие полония и радия, исследование радиоактивного излучения. Ими введен термин «радиоактивность».

В 1906 году в результате уличной катастрофы погибает Пьер Кюри. Мария остается с двумя малолетними дочерьми. Все же она находит в себе силы продолжать работу, и она приводит к тому, что в 1911 году Шведская королевская академия наук присудила Марии Кюри Нобелевскую премию по химии за исследование свойств радия. Это открытие привело к рождению новой области науки – радиологии. Таким образом, Мария Склодовская-Кюри стала первой и единственной женщиной дважды лауреатом Нобелевской премии.

По стопам матери пошла и ее старшая дочь Ирен. В семнадцать лет она стала студенткой Сорбонны. Шел 1914 год, началась Первая мировая война. Продолжая учебу, Ирен одновременно помогала матери в организации радиологической службы. После окончания учебы в 1920 году Ирен стала работать ассистентом Марии Кюри в Институте радия, где и познакомилась со своим будущим мужем Фредериком Жолио, также работавшим ассистентом Марии Кюри.

Под руководством дважды Нобелевского лауреата Ирен и Фредерик стали со временем выдающимися учеными. В 1934 году они открыли искусственную радиоактивность. В этом же году не стало Марии Кюри и Фредерик Жолио присоединяет к своей фамилии фамилию Кюри, а Ирен Кюри – фамилию Жолио.

В 1935 году за открытие явления искусственной радиоактивности – одного из крупнейших открытий века – супруги Жолио-Кюри удостаиваются Нобелевской премии по химии. Ирен, наверное, единственная женщина, не считая членов королевской семьи, которая дважды присутствовала на торжественной церемонии вручения этой самой престижной награды. Первый раз это было в 1911 году, когда вручали премию ее матери, а теперь и ей самой пришлось быть в центре внимания.

Преданность науке привела к тому, что жизнь обоих поколений Кюри в прямом смысле принесена ей в жертву. Мария Кюри, ее дочь и зять Фредерик Жолио-Кюри умерли от лучевой болезни, возникшей в результате многолетней работы с радиоактивными веществами.

Созвучной с фамилией Кюри стала и фамилия Нобелевских лауреатов супругов Кори. В 1920 году Герти Тереза Радниц вышла замуж за Карла Фердинанда Кори. У них было много общего. Родились в одном году – в 1896, в одном городе – Праге, оба интересовались медициной. В 1922 году супруги эмигрируют в США. Здесь в Буффало, а позднее в Сент-Луисе и Бостоне, будучи профессорами в области фармакологии и биохимии, они занимаются научной работой. В 1947 году за исследование обмена углеводов у животных и ферментов, связанных с ним, описание процесса ресинтеза гликогена из молочной кислоты биохимикам супругам Кори была присуждена Нобелевская премия по медицине.

По стопам своих родителей

Тезис о том, что природа отдыхает на детях, оправдан не всегда. И этому есть много подтверждений. К упомянутым выше Лоренсу Брэггу и Ирен Кюри можно добавить еще несколько фамилий.

Всемирно известный датский ученый Нильс Бор в 1922 году был награжден Нобелевской премией по физике «За заслуги в исследовании строения атомов». Его сын Оге Бор получил Нобелевскую премию по физике в 1975 году как один из авторов обобщенной модели атомного ядра.

Английский физик Джозеф Джон Томсон вошел в историю науки как человек, открывший электрон. В 1906 году ему была присуждена Нобелевская премия по физике за исследование прохождения электричества через газы. Его сын Джорж Паджет Томсон получил такую же премию в 1937 году за открытие дифракции электронов.

Шведский физик Зигбан Карл Манне Георг – основоположник ядерной и рентгеновской спектроскопии. Получил Нобелевскую премию по физике в 1924 году. Через 57 лет в 1981 году его сын Зигбан Кай Манне был удостоен такой же награды за разработку метода электронной спектроскопии для химического анализа.

Шведский биохимик Ханс фон Эйлер-Хельпин – автор трудов по биокатализу, стал Нобелевским лауреатом в 1929 году. Его сын Ульф фон Эйлер-Хельпин нашел свои научные интересы в физиологии. За свои исследования в этой области удостоился в 1970 году Нобелевской премии по медицине.

Дважды лауреаты

Кроме Марии Склодовской-Кюри еще трое ученых становились дважды Нобелевскими лауреатами. Американский физик и химик, общественный деятель Лайнус Карл Полинг – единственный в мире ученый, который получил Нобелевские медали из рук королей двух разных королевств. Нобелевскую премию по химии за применение новейших достижений физики и химии в биологии и медицине в 1954 году Полингу вручил король Швеции Густав VI Адольф. Нобелевскую премию мира 1962 года, которой он был удостоен за усилия в борьбе против испытания ядерного оружия, Полинг получил в Осло из рук короля Норвегии Олафа V.

Согласно Уставу Нобелевского фонда удостоиться премии можно лишь однажды в каждой области. Однако и здесь бывают исключения. Американский ученый Джон Бардин удостоен двух Нобелевских премий по физике. Одной – в 1956 году за исследования полупроводников и открытие транзисторного эффекта, другой – в 1972 году за создание теории сверхпроводимости.

Английский биохимик Фредерик Сенгер разработал основные методы исследований первичной структуры белков. Установил химическое строение молекулы инсулина и первичную структуру гена, кодирующего синтез инсулина. Получил две Нобелевские премии по химии в 1958 и 1980 годах.

Торжественная церемония

А теперь немного о том, что сопутствует присуждению Нобелевских премий.

Согласно Уставу Нобелевского фонда премии присуждаются за выдающиеся работы последних лет или за открытия, важность которых оценена только недавно.

Ежегодно Нобелевские комитеты, созданные при учреждениях, ответственных за присуждение премий, рассылают тысячи писем известным ученым и организациям с предложением указать среди своих коллег достойных присуждения премии. Сами же руководители Нобелевского фонда в отборе кандидатов не участвуют.

Члены Нобелевского комитета выполняют свои обязанности на общественных началах. Обсуждение кандидатов и голосование происходят в полной секретности. Разногласия, если они бывают, не заносятся в протокол. Имена кандидатов объявляются с краткой мотивировкой. Решения о присуждении Нобелевской премии не подлежат ни обжалованию, ни отмене. По окончании работы члены Комитета идут в ресторан стокгольмской Биржи, получив от ее управляющего серебряный талер на оплату традиционного обеда, предусмотренного завещанием Нобеля.

Вручение премий в Швеции считается очень большим праздником. Мероприятия, связанные с этим событием, продолжаются больше недели. Официальная церемония вручения премий происходит 10 декабря, в день смерти великого сына Швеции.

В этот день все прибывшие лауреаты рано утром собираются в концертном зале Стокгольмской филармонии, чтобы присутствовать при поднятии шведского флага. Проводится репетиция церемонии вручения премий. Согласно предписанному протоколу лауреаты должны быть одеты строго официально, во фраки. Большая часть виновников торжества берет фраки в аренду здесь же, в Стокгольме, только немногие шьют его специально для себя.

В тот же день, вечером, в огромном зале, вмещающем 1700 человек, происходит церемония награждения. При этом присутствуют почетные гости и члены шведской королевской семьи. Сама церемония необычайно торжественна. Лауреаты поднимаются на постамент, на котором начертана буква „N“, и получают из рук короля Швеции почетный диплом, изготовленный художником специально для каждого лауреата, и Золотую медаль. Она имеет диаметр 65 мм и весит 205 г. На лицевой стороне изображен А. Нобель и указаны даты его рождения и смерти (1833- 1896). На оборотной стороне надпись «Способствует облагораживанию жизни открытиями в области искусств». Это строки из шестой песни «Энеиды» Вергилия. Надпись на этой стороне дополняет рисунок с изображением природы в образе богини, выплывающей из облаков, которая держит рог изобилия. Вуаль, скрывающую ее лицо, поднимает женщина, олицетворяющая гений науки.

После вручения каждой премии оркестр исполняет фрагмент одного из классических музыкальных произведений. По окончании церемонии награждения все покидают зал и направляются в городскую ратушу, где в Золотом зале устраивается торжественный прием. На банкете бургомистр произносит три тоста: за короля, в память Альфреда Нобеля и за лауреатов. Hа следующий день происходит вручение чека – денежного эквивалента Нобелевской премии. По положению лауреаты премии должны в течение шести месяцев выступить в Стокгольме с Нобелевской лекцией – популярным изложением тематики своей работы.

Альфред Нобель держал целый штат юристов – патентоведов, охранявших его изобретательские права в Германии, Швеции, Англии, США, России и др. странах.

Но, как заметил Исполнительный директор Нобелевского фонда Михаэль Сульман, сын того Сульмана, который был послом Швеции в СССР, и внук того Рагнара Сульмана, которому Нобель поручил создать Нобелевский фонд, самым главным, незапатентованным изобретением Нобеля стала Нобелевская премия.

В этом году Нобелевские премии присуждались в 109-й раз. И как всегда среди лауреатов были представители разных стран, континентов и национальностей.

Существует расхожее мнение, что Нобелевская премия не вручается за достижения в области математики потому, что жена Альфреда Нобеля сбежала с ученым-математиком. Это не более, чем миф: Нобель никогда не был женат.

Невероятно, но факт: чаще всего Нобелевскую премию получали ученые, родившиеся 28 февраля и 21 мая.

Средний возраст нобелевского лауреата – 59 лет.

Лоренс Брегг – это самый молодой ученый, удостоенный Нобелевской премии. Он получил награду в возрасте 25 лет. Самым старым нобелевским лауреатом является 90-летний Леонид Гурвиц.

Интересно, что примерно 1/5 обладателей Нобелевской премии либо евреи, либо имеют еврейские корни.

Интересный факт: в завещании Альфреда Нобеля в списке наук, за достижения в которых следует вручать премию, экономика не упоминается. Ее стали вручать по инициативе государственного Банка Швеции в 1969 году.

Среди нобелевских лауреатов есть отец и сын. Джозеф Джон Томсон, впервые отрывший электрон, получил премию в 1906 году за исследования электропроводности в газовых средах. Через 21 год премию получил его сын, Джордж Паджет Томсон, описавший явление дифракции электронов на кристаллах.

Единственным обладателем Нобелевской и Шнобелевской премии одновременно является голландский физик Андрей Гейм. В 2000 году он получил «шнобелевку» за опыты по левитации лягушек в магнитном поле, а в 2010 – «нобелевку» за описание свойств графена.

В Третьем Рейхе ученым было запрещено получать Нобелевскую премию, так как в 1935 году премию мира получил К. фон Осецкий – ярый противник нацистского режима. В итоге от премии отказались химики Р. Кун (1938 г.) и А. Бутенандт (1939 г.), а также медик Г.Домагк (1939 г.). Кстати, с этим запретом связан один интересный факт: опасаясь того, что их нобелевские медали отнимут, немецкие физики М.фон Лауэ и Д. Франк отправили свои награды на хранение своему датскому коллеге Нильсу Бору. Во время оккупации Дании вермахтом химик Дьердь де Хевеши растворил медали немецких физиков в «царской водке» (смесь концентрированных азотной и соляной кислот). После войны химик получил золото из раствора и отправил его в Академию наук Швеции. Там из этого золота отчеканили новые медали и повторно вручили их немецким физикам. Это единственный случай повторного награждения за всю историю Нобелевской премии. Интересно, что сам де Хевеши впоследствии также стал нобелевским лауреатом.

Альберт Эйнштейн около 60 раз номинировался на Нобелевскую премию за свою теорию относительности, но в итоге получил награду за то, что объяснил фотоэлектрический эффект.

В 1925 году Нобелевская премия по литературе досталась Бернарду Шоу. Писатель по этому поводу заявил в своей ироничной манере, что премию ему вручили за то, что он, на радость всему миру, ничего в этом году не опубликовал.

В истории Нобелевской премии были неоднократные случаи отказа от нее. Как уже говорилось выше, от награды вынуждены были отказываться ученые, жившие в нацистской Германии. В 1958 году под нажимом советского руководства «нобелевку» по литературе не принял Борис Пастернак. Абсолютно добровольно от премии отказались писатели Жан-Поль Сартр в 1964 году и Ле Дык Тхо в 1972 году. В 2010 году Нобелевскую премию мира не смог получить китайский правозащитник Лю Сяобо, т.к. вместо нее получил 11 лет тюрьмы от своего правительства за «покушение на основы государственности КНР».

Интересный факт: Нобелевскую премию мира хотели в 1918 году присудить Ленину, за его «Декрет о мире». Однако из-за начала красного террора нобелевский комитет пересмотрел свое решение. Более того, в 1939 году на премию мира номинировался Гитлер, но из-за агрессии против Польши фюрер с наградой «пролетел».

Знаменитый физик Уильям Генри Брэгг родился в Англии в 1862 г. в семье моряка. В 1884 г. он окончил Кембриджский университет и вскоре стал профессором физики и математики в университете Южной Австралии. Там – в Австралии – родился его сын Уильям Лоренс Брэгг, которому было суждено, вместе с отцом, стать гордостью Англии, вписать славные страницы в историю английской и мировой науки. Блестящие способности позволили Вилли (так звали его в семье) с отличием закончить Аделаидский университет уже в 1908 г. А через год семья переехала в Англию, где У.Г.Брэгг преподавал и вел научные исследования в Лидсе, а УЛ.Брэгг завершал свое образование в Кембридже.

В июне 1912 г. молодой Уильям Лоренс приехал на каникулы в Лидс. В это время вышла статья Макса Лауэ о дифракции Х-лучей на кристаллах. Отец и сын Брэгг многократно обсуждали статью (она опровергала некоторые научные гипотезы У.Г.Брэгга). Чтобы точнее представить ход событий, следствием которых явилось рождение рентгеноструктурного анализа, процитируем воспоминания У.Л.Брэгга, записанные им полвека спустя: "По возвращении в Кембридж я продолжал изучать результаты Лауэ и убедился, что особенности дифракционной картины объясняются схемой расположения атомов в кристалле ZnS, который использовал Лауэ. Свою первую работу по дифракции ZnS я изложил на заседании Кембриджского философского общества в ноябре 1912 г. В ней я показал, что в основе "цинковой обманки" (так называется минерал состава ZnS, другое название этого минерала – сфалерит) лежит кубическая гранецентрированная решетка. Это был первый, хотя и неполный анализ кристалла с помощью Х-лучей".

Таким образом, именно Брэгг-младший сделал первый решительный шаг к познанию структуры кристалла, и было ему тогда 22 года. Вскоре и Брэгг-отец проявил немалый интерес к изучению кристаллических структур. Он сконструировал для этой цели специальный прибор – ионизационный спектрометр, конструкция которого в основе своей предвосхищала прибор для рентгенострукурного анализа – автоматический дифрактометр. В качестве первых объектов были выбраны NaCI, KCI, KBr, алмаз, ZnS (сфалерит). " Спектрометр X-лучей, вспоминал в последствии У.Л.Брэгг, – открыл новый мир. Он оказался более мощным средством анализа кристаллической структуры, чем фотографии Лауэ... Это было подобно золотой россыпи с разбросанными самородками, ожидающими, чтобы их подобрали. На этом этапе отец и я объединили силы и неистово работали все лето 1913 года... Это было восхитительное время, когда мы трудились ежедневно до глубокой ночи, изучая новые миры, которые раскрывались перед нами в безмолвной лаборатории".

В 1915 г. увидела свет первая монография У.Г.Брэгга и У.Л.Брэгга, посвященная рентгеноструктурному анализу, в которой было описано строение 33 веществ. В том же году отец и сын Брэгги были удостоены Нобелевской премии, причем Брэгг-сын стал самым молодым Нобелевским лауреатом за всю историю присуждения этих престижных премий в XX веке.

Вскоре к определению кристаллических структур подключилась большая группа исследователей из разных стран, но Брэгги – основоположники рентгеноструктурного анализа – еще долгие годы оставались лидерами этого важнейшего научного направления.

Уильям Генри Брэгг возглавил группу исследователей, изучавших строение органических кристаллов в Лондонском Королевском институте; с 1923 г. по 1942 г. (до конца своих дней) он занимал почетную должность директора этого института; впоследствии, с 1953 г. по 1966 г. главой Королевского института был Брэгг-младший.

Накопление и анализ сведений о строении кристаллов в 1920 г. привели Уильяма Лоренса Брэгга к созданию первой таблицы атомных радиусов, и хотя эта таблица вскоре была пересмотрена (это сделали немецкий ученый Виктор Гольдшмидт и величайший химик XX века американец Лайнус Полинг), именно это исследование заложило основы новой науки – кристаллохимии.

В конце 20-х годов в университете Манчестера У.Л. Брэгг и его ученики выполнили цикл классических работ по определению структуры силикатов. Исследование этих структур стало триумфом рентгеноструктурного анализа и кристаллохимии. Силикаты – один из важнейших классов неорганических химических соединений. Они составляют основу Земной коры, они широко используются в технике. Естественно, многие химики пытались разобраться в структурах силикатов, но все без исключения теории строения этих веществ оказались ошибочными. Развитая У.Л.Брэггом концепция, согласно которой разнообразие силикатов определяется различием способов сочленения тетраэдров SiO 4 (и тетраэдров АlO 4 в случае алюмосиликатов), и поныне составляет основу этой обширной области химии и геохимии.

Создание рентгеноструктурного анализа и развитие кристаллохимии силикатов к середине 30-х годов принесли У.Л. Брэггу всемирную славу; он стал бесспорным лидером кристаллографов и кристаллохимиков всего мира, и когда в 1948 г. по его инициативе был создан Международный союз кристаллографов, и поныне остающийся одним из крупнейших научных сообществ, У.Л. Брэгг стал его первым президентом.

Но впереди у него еще был долгий путь, длинная цепь успехов, завоеванных ярким талантом и самоотверженным трудом. В 1938-53 гг., возглавляя знаменитую Кавендишевскую лабораторию, он осуществил многочисленные исследования по кристаллохимии металлов и сплавов, а затем, переехав из Кембриджа в Лондон, принял участие в работах по изучению структуры белков, явившихся одной из самых ярких страниц истории естествознания.

Диапазон научных интересов и достижений этого уникального человека поистине поражает. Силикаты, металлы, белки... И в каждом из столь различных классов химических веществ – весомые, основополагающие структурные данные. Точное знание структуры – знаменательная черта современной химии, и следовательно, Уильяма Лоренса Брэгга можно по праву причислить к числу ее творцов. К тому же он был одним из основоположников кристаллохимии – науки о строении вещества, базирующейся на результатах рентгеноструктурного анализа.

А между тем, ни в одной из своих работ У.Л. Брэгг не употребил термина "кристаллохимия". Он не считал себя химиком. Напротив – часто подчеркивал свою принадлежность к славной когорте физиков XX века. Разумеется, он имел для этого основания. Нобелевская премия по физике ознаменовала создание одного из самых мощных физических методов изучения вещества. Однако химичны по своей сути результаты, получаемые с помощью этого метода – такие, как постройки из тетраэдров SiO 4 в силикатах (см. рисунок), плотнейшие шаровые упаковки в металлах, частично неупорядоченная структура сплавов и их трансформация в интерметаллические химические соединения и, наконец, фантастически сложное строение белков (У.Л.Брэгг одним из первых описал его в своей знаменитой статье "Молекулы-гиганты"). Невозможно представить себе современную химию без этих сведений.

Согласимся с У-Л.Брэггом – конечно, он физик, как и его отец. Но и химик тоже – великий химик.

У.Л.Брэгг был блестящим педагогом, талантливым популяризатором науки, занимался проблемой организации научных исследований. В одной из статей, посвященных этой проблеме, он отмечал, что ученых можно подразделить на четыре типа: мыслителей – тех, "кто находит новый взгляд на явление" (Ньютон, Бор и др.), первооткрывателей , обнаруживших не известное ранее явление, но "редко идущих к новым достижениям" (например, Рентген), охотников – "чующих истину" (Фарадей, Резерфорд и др.), и конструкторов – создающих аппаратуру, которая открывает совершенно новый путь научного исследования (например, Вильсон).

Брэгг говорил о физиках, но аналогичная типология приложима и к химикам, и к другим естествоиспытателям. Затруднительно, однако, сколько-нибудь уверенно отнести к одному из этих типов самого Брэгга-младшего. Он отличился и как мыслитель, и как первооткрыватель, и как охотник. Он не претендовал, пожалуй, лишь на лавры конструктора. В этом отношении он не захотел конкурировать со своим отцом – создателем рентгеновского дифрактометра.